Design of of Clari-floculator and flash mixing tank

Examlple 1:

For a water treatment plant with daily output 50000 m3 – and working period = 20 hr/day .design:

- 1- Flash mixing tank.
- 2- Clari-floculator tank.

Solution:

$$Q_{m.m} = 50000 \text{ m}^3/\text{day} = 2500 \text{ m}^3/\text{hr} = 41.667 \text{ m}^3/\text{min} = 0.694 \text{ m}^3/\text{sec}$$

1) Deign of flash mixing tank:

Let T = (5 - 60) sec = 30 sec
C = Qm.m.(m3/sec.) * T = 0.694 * 30 = 20.83 m3
$$C = \pi \frac{g^2}{4} * d * n$$

Let d = 3.0 m

n = 1tank

get Ø:
$$20.83 = \pi \frac{\emptyset^2}{4} * 3 * 1$$

$$\therefore \emptyset = 2.97 = 3.00 \ m < 35.00 \ m$$

2) Design of Clari-floculator tank:

a) Outer tank:

$$\therefore S. Aout = \frac{Cout}{dout} = \frac{7500}{3} = 2500 \quad m2$$

b) Inner tank:

Tin = Tfloc. = 0.50 hr.

Cin= Qm.m.
$$(m3/hr.)$$
 * Tin = 2500 * 0.50 = 1250 m3

Let din = dout
$$-0.50 \text{ m} = 3 - 0.50 = 2.50 \text{ m}$$

$$\therefore S. Aout = \frac{Cout}{dout} = \frac{1250}{2.5} = 500 \quad m2$$

Check on surface loading rate:

$$S.L.R. = \frac{Qm.m (m3/hr) * 24}{S.A.out - S.A.in} = \frac{2500 * 24}{2500 - 500} = 30 m2/m2/day$$

$$S.L.R. = (25 \sim 40) m2/m2/day$$
 safe

- S.A. out =
$$2500 = \pi \frac{\emptyset out^2}{4} n$$

Let \emptyset out = \emptyset max. = 35 m

- S.A. in =
$$500 = \pi \frac{\emptyset i n^2}{4} n$$

Let n out = n in = 3 m

Check

1)
$$\frac{\text{Ø in}}{\text{Ø out}} = \frac{14.60}{32.60} = 0.44$$
 (0.25 ~ 0.50)

2)
$$V hz = \frac{Qm.m (m3/min)}{n*\pi*\emptyset \text{ out*dout}} = \frac{41.667}{3*\pi*32.6*3} = 0.045 \frac{m}{min} < 0.30 \ m/min$$

3)
$$hyd.load = \frac{Qm.m (m3/hr)*24}{n*\pi*\emptyset \text{ out}} = \frac{2500*24}{3*\pi*32.6} = 195.28 \, m3/m2/hr$$
 (150 – 300)

Examlple 2:

For a water treatment plant with 5 Clari-floculator tank - and working period = 20 hr/day .get max. productivity of the plant :

$$\emptyset$$
 in = 15.00 m

$$din = 2.50 m$$

$$\emptyset$$
 out = 30.00 m

$$d out = 3.00 m$$

Solution:

- S.A. out =
$$\pi \frac{\emptyset out^2}{4} n$$
 = 3534.29 m2

- S.A. in =
$$\pi \frac{gin^2}{4}n$$
 = 883.57 m2

-
$$Cin = S.A.in * din = 2208.925 m3$$

Let Tin = 20 min . =
$$\frac{1}{3}hr$$

Let Tout =
$$2 hr + \frac{20}{60} = \frac{7}{3} hr$$
.

Qm.m 1 =
$$\frac{c \ out}{Tout} = \frac{10602.87}{7/3} = 4544.1 \ m3/hr$$

Qm.m 2 =
$$\frac{c in}{T_{in}} = \frac{2208.925}{1/3} = 6626.775 \, m3/hr$$

$$\frac{Qm.\,m.\,3}{24} = \frac{S.\,L.\,R.*\,(S.\,A.\,out-S.\,A.\,in)}{24} = \frac{40*(3534.\,29-883.\,57)}{24} = 4417.\,87\,\,m3/hr$$

Om. m.
$$4 = vhz * n * \pi * \emptyset$$
 out * dout * $60 = 0.3 * 5 * \pi * 30 * 3 * 60 = 25446.9 m3/hr$

$$Qm. m. 5 = \frac{hyd. load * n * \pi * \emptyset \text{ out}}{24} = \frac{300 * 5 * \pi * 30}{24} = 5890.48 \ m3/hr$$

$$\therefore Qm.m. = 4417.87 \ m3/hr$$