Examlple 1 :
For a water treatment plant with daily output 50000 m 3 - and working period $=20 \mathrm{hr} /$ day .design :

1- Flash mixing tank.
2- Clari-floculator tank.

Solution:
$Q_{\text {m.m }}=50000 \mathrm{~m}^{3} /$ day $=2500 \mathrm{~m}^{3} / \mathrm{hr}=41.667 \mathrm{~m}^{3} / \mathrm{min}=0.694 \mathrm{~m}^{3} / \mathrm{sec}$

1) Deign of flash mixing tank:

Let $\mathrm{T}=(5-60) \mathrm{sec}=30 \mathrm{sec}$
C $=$ Qm.m.(m3/sec.) ${ }^{*} \mathbf{T}=0.694$ * $30=20.83 \mathrm{~m} 3$
$\boldsymbol{C}=\boldsymbol{\pi} \frac{\varnothing^{2}}{4} * \boldsymbol{d} * \boldsymbol{n}$
Let $\mathbf{d}=3.0 \mathrm{~m}$
$\mathrm{n}=1$ tank
get Ø: $20.83=\pi \frac{\emptyset^{2}}{4} * 3 * 1$
$\therefore \emptyset=2.97=3.00 \mathrm{~m}<35.00 \mathrm{~m}$
2) Design of Clari-floculator tank :

Tsed. $=(2-3) \mathbf{h r}=2.5 \mathrm{hr}$
T floc. $=(\mathbf{2 0}-30) \mathrm{min}=30 \mathrm{~min}=0.50 \mathrm{hr}$
a) Outer tank:

Tout $=$ Tsed. + Tfloc. $=2.50+0.50=3.0 \mathrm{hr}$
Cout= Qm.m.(m3/hr.) * Tout = 2500 * $3=7500 \mathrm{~m} 3$
Let dout $\mathbf{= 3 . 0 0} \mathbf{~ m}$
$\therefore S$. Aout $=\frac{\text { Cout }}{\text { dout }}=\frac{7500}{3}=2500 \mathrm{~m} 2$
b) Inner tank:

Tin = Tfloc. $=0.50 \mathrm{hr}$.
Cin= Qm.m.(m3/hr.) * Tin $=2500 * 0.50=1250 \mathrm{~m} 3$
Let din = dout $\mathbf{- 0 . 5 0} \mathrm{m}=3-\mathbf{0 . 5 0}=2.50 \mathrm{~m}$
$\therefore S$. Aout $=\frac{\text { Cout }}{\text { dout }}=\frac{1250}{2.5}=500 \mathrm{~m} 2$
Check on surface loading rate :
S. L.R. $=\frac{\text { Qm. } m(\mathrm{~m} 3 / \mathrm{hr}) * 24}{\text { S.A.out }- \text { S.A.in }}=\frac{2500 * 24}{2500-500}=30 \mathrm{~m} 2 / \mathrm{m} 2 /$ day

$$
\text { S.L.R. }=(25 \sim 40) \mathrm{m} 2 / \mathrm{m} 2 / d a y \quad \text { safe }
$$

- S.A. out $=2500=\pi \frac{\varnothing o u t^{2}}{4} n$

Let \emptyset out $=\emptyset$ max. $=35 \mathbf{m}$

Get $\mathrm{n}=2.59=3.00$
Get \emptyset out actual $=32.57=32.60 \mathrm{~m}$

- S.A. in $=500=\pi \frac{\varnothing i n^{2}}{4} \boldsymbol{n}$

Let \mathbf{n} out $=\mathbf{n}$ in $=\mathbf{3} \mathbf{~ m}$

Get \varnothing in $=14.56=14.60 \mathbf{m}$
Check

1) $\frac{\emptyset \text { in }}{\emptyset \text { out }}=\frac{14.60}{32.60}=0.44 \quad(0.25 \sim 0.50)$
2) $V \mathrm{hz}=\frac{Q \mathrm{~m} \cdot \mathrm{~m}(\mathrm{~m} 3 / \mathrm{min})}{n * \pi * \emptyset \text { out } * \text { dout }}=\frac{41.667}{3 * \pi * 32.6 * 3}=0.045 \frac{\mathrm{~m}}{\mathrm{~min}}<0.30 \mathrm{~m} / \mathrm{min}$
3) hyd. load $=\frac{Q m . m(m 3 / h r) * 24}{n * \pi * \varnothing \text { out }}=\frac{2500 * 24}{3 * \pi * 32.6}=195.28 \mathrm{m3} / \mathrm{m} 2 / \mathrm{hr} \quad(150-300)$

Examlple 2 :

For a water treatment plant with 5 Clari-floculator tank - and working period $=\mathbf{2 0} \mathbf{h r} /$ day .get max. productivity of the plant :
\emptyset in $=15.00 \mathrm{~m}$
\emptyset out $=\mathbf{3 0 . 0 0} \mathbf{~ m}$
$\mathbf{d i n}=2.50 \mathrm{~m}$
d out $=3.00 \mathrm{~m}$

Solution:

- S.A. out $=\pi \frac{\text { бout }^{2}}{4} \boldsymbol{n}=3534.29 \mathrm{~m} 2$
- S.A. in $=\pi \frac{\varnothing \text { in }}{}{ }^{2} n=883.57 \mathrm{~m} 2$
- C out $=$ S.A.out * dout $=10602.87 \mathrm{~m} 3$
- Cin = S.A.in ${ }^{*}$ din $=2208.925 \mathrm{~m} 3$

Let $\operatorname{Tin}=20 \mathrm{~min} .=\frac{1}{3} h r$
Let Tout $=2 \mathrm{hr}+\frac{20}{60}=\frac{7}{3} \mathrm{hr}$.
Qm.m $1=\frac{\text { Cout }}{\text { Tout }}=\frac{10602.87}{7 / 3}=4544.1 \mathrm{~m} 3 / \mathrm{hr}$
Qm.m $2=\frac{C \text { in }}{\text { Tin }}=\frac{2208.925}{1 / 3}=6626.775 \mathrm{~m} 3 / \mathrm{hr}$

Qm.m. $3=\frac{\text { S.L.R.* (S.A.out }- \text { S. A.in })}{24}=\frac{40 *(3534.29-883.57)}{24}=4417.87 \mathrm{~m} 3 / \mathrm{hr}$
Qm.m. $4=v h z * n * \pi * \emptyset$ out $* \operatorname{dout} * 60=0.3 * 5 * \pi * 30 * 3 * 60=25446.9 \mathrm{~m} 3 / \mathrm{hr}$
Qm.m. $5=\frac{\text { hyd. load } * n * \pi * \emptyset \text { out }}{24}=\frac{300 * 5 * \pi * 30}{24}=5890.48 \mathrm{~m} 3 / \mathrm{hr}$

