Higher Technological Institute Chemical Engineering Department

Chapter 4 Material and Heat Balance

Material Balance

Material Balance Without Chemical Reaction
 For steady state conditions

$$
\begin{aligned}
& \sum \text { mass in }=\sum \text { mass out } \\
& \sum \text { moles in }=\sum \text { moles out }
\end{aligned}
$$

Process

- A series of actions or steps taken in order to achieve a particular end.

Chemical Process

...chemical process is a method or means of somehow changing one or more chemicals or chemical compounds. It can occur by itself or be caused by an outside force, and involves a chemical reaction of some sort...

Chemical Process Example

THE BREWERY PROCESS

Block Diagram

- Simple diagram that "shows at a glance" the process
- Most used for MB solving

Show:

- Flows
- Unit Operations
- Some extra data

Flow Diagram

- Recommended for "general" information

- Basic Process Step in chemical engineering
- Unit operations involve:
- physical change or chemical transformation
- Examples:
- separation, crystallization, evaporation, filtration, polymerization, isomerization, and other reactions

Diagram picture

Real-life picture

Diagram picture

Real-life picture

Unit Operations

Heat Exchanger

Diagram Picture

Real-Life Picture

Unit Operations

Diagram Picture

Real-Life Picture

Flow (mass, mole, volume)

- Mass flow $[\mathrm{kg} / \mathrm{s}]=$ mass flow per unit time
- Mole flow $[\mathrm{mol} / \mathrm{s}]=$ mole flow per unit time
- Volume flow [m3/s] = volume flow per unit time
- How much quantity of (mass/mole/volume) is "flowing" per unit time

Flow (mass, mole, volume)

- Mass flow examples: - Volume Flow examples:
$-10 \mathrm{~kg} / \mathrm{min}$
$-10 \mathrm{m3} / \mathrm{s}$
$-1 \mathrm{lb} / \mathrm{s}$
- 350 kTon/year
-3 mg per day
- 1 liter per minute
$-4.5 \mathrm{ml} /$ day
$-18,000 \mathrm{gal} /$ year
- Mole Flow examples:
-1 mol H 2 O per min
$-3.02 \mathrm{kmol} / \mathrm{h}$
- $125 \mathrm{lbmol} / \mathrm{s}$

Material Balance without chemical reactions

 overall material balance:Total amount of matter into the vessel= total amount of matter out of vessel

component material balance:

Amount of components (i) into the vessel
$=$ amount of comp.(i) out of vessel

Steady-state operation: Under steady-state, the values of all variables associated with the process do not change with time. That is, at any given location in the process, the values of temperature, pressure, composition, flow rates, etc. are independent of time. Even though a process may be steady state, it is important to realize that temperature, flow rates, or other variables may, and typically do, change from one location to another (e.g. from one process stream to another).

Solving Material Balance Problems for Single Units Without Reaction

1. Mixer unit:

Example: It is required to prepare 1250 kg of a solution composed of $12 \mathrm{wt} . \%$ ethanol and $88 \mathrm{wt} . \%$ water. Two solutions are available, the first contains $5 \mathrm{wt} . \%$ ethanol, and the second contains $25 \mathrm{wt} . \%$ ethanol. How much of each solution are mixed to prepare the desired solution?

Solution:

1. Ethanol balance

Input $=$ output

$$
\begin{aligned}
& \mathrm{A}\left(\frac{5}{100}\right)+\mathrm{B}\left(\frac{25}{100}\right)=\mathrm{M}\left(\frac{12}{100}\right) \\
& 0.05 \mathrm{~A}+0.25 \mathrm{~B}=0.12 \mathrm{M} \\
& \quad \mathrm{~A}=\left(\frac{150-0.25 \mathrm{~B}}{0.05}\right)=3000-5 \mathrm{~B} .
\end{aligned}
$$

2. Water balance

Input $=$ output
$0.95 \mathrm{~A}+0.75 \mathrm{~B}=0.88 \mathrm{M}=0.88(1250)=1100$
$0.95 \mathrm{~A}+0.75 \mathrm{~B}=1100$
Sub. (1) in (2)
$0.95(300-5 \mathrm{~B})+0.75 \mathrm{~B}=1100$
$2850-4.75+0.75 \mathrm{~B}=1100$
$4 \mathrm{~B}=1750$

$$
\begin{aligned}
& \mathrm{B}=\underline{437.5 \mathrm{~kg}} \\
& \mathrm{~A}=3000-5(437.5)=\underline{812.5 \mathrm{~kg}}
\end{aligned}
$$

3. Checking: Total material balance (T.M.B.), Input $=A+B=437.5+812.5=1250 \mathrm{~kg}$

Output $=\mathrm{M}=1250 \mathrm{~kg}$

Example: Balance on a mixing unit

200 kg of a $40 \% \mathrm{w} / \mathrm{w}$ methanol/water solution is mixed with 100 kg of a $70 \% \mathrm{w} / \mathrm{w}$ methanol/water solution in a batch mixer unit. What is the final quantity and composition?

Input	$=$	Output (Final quantity)

Total mass in $=$ Total mass out $=200+100=300 \mathrm{~kg}$
Mass in of methanol = Mass out of methanol
$80+70=$ final methanol mass $=150 \mathrm{~kg}$
Mass in of water = Mass out water
$120+30=$ final water mass $=150 \mathrm{~kg}$
Therefore final composition of methanol is $(150 / 300) \times 100=50 \%$ by wt.

Example (2): Material balances on a Mixing unit

A mixing unit is fed with three streams; the first stream is 20 Kg of mixture A and B. The second stream is 60 Kg of $\mathrm{A}, \mathrm{B}(20 \% \mathrm{~A})$ and the third stream is 30 Kg of A and $\mathrm{B}(50 \% \mathrm{~A})$. If the final product contains $40 \% \mathrm{~A}$. find the composition of each stream.

Overall mass balance

$$
\begin{gathered}
M_{1}+M_{2}+M_{3}=M_{4} \\
60+20+30=M_{4}
\end{gathered}
$$

$M_{4}=110$

Component Material Balance on component A

$$
20^{*} \% \mathrm{~A}+60^{*} 0.2+30^{*} 0.5=110^{*} 0.4
$$

$\% A M_{1}=85 \%$
Component Material Balance on component B

$$
20^{*} \% \text { в }+60^{*} 0.8+30^{*} 0.5=110^{*} 0.6
$$

\%в $\mathrm{Mı}^{\text {}}=15 \%$

2. Disililition codumim:

 complosisitions of the waste streatin.

Solution:

Although the distillation unit shown in Figure below is comprised of more than one unit of equipment, you can select a system that includes all of the equipment inside the system boundary. Consequently, you can ignore all the internal streams for this problem.

Basis: 1 hr
$\mathrm{F}=1000 \mathrm{~kg}$
$\mathrm{P}=(10 / 100)$ of Feed $=0.1 \times(1000)=100 \mathrm{~kg}$

Overall Material Balance:

Input $=$ Output
$\mathrm{F}=\mathrm{P}+\mathrm{W}$

Benzene Material Balance:

$(0.35)(1000)=(0.85)(100)+\mathrm{Kg}$ of benz. in (W)
$350=85+\mathrm{Kg}$ of benz. in (W)

Kg of benz. in $(\mathrm{W})=265 \mathrm{~kg}$

Toluene Material Balance:

$(0.65)(1000)=(0.15)(100)+\mathrm{Kg}$ of tol. in (W)
$650=15+\mathrm{Kg}$ of benz. in $(\mathrm{W}) \quad \mathrm{Kg}$ of tol. in $(\mathrm{W})=635 \mathrm{~kg}$
$\mathrm{W}=\mathrm{Kg}$ of benz. in $(\mathrm{W})+\mathrm{Kg}$ of tol. in $(\mathrm{W})=265+635=900 \mathrm{~kg}$

Mass fraction of benz. in waste $=\frac{265}{265+635}=0.294$
Mass fraction of tol. in waste $=\frac{635}{265+635}=0.706$

Example (2): Material balances on a distillation

 columnA mixture of Benzene and Toluene is separated into two fractions, calculate the amount of the bottom stream and its composition.

Total moles in = Total moles out

$$
\begin{aligned}
& F=D+B \\
& B=F-D \\
& B=100-50=50 \mathrm{~mol} / \mathrm{hr}
\end{aligned}
$$

Component Material Balance

Benzene Material Balance

Moles in of benzene $=$ Moles out of benzene

100 * $(60 / 100)=50$ * $(95 / 100)+$ moles of benzene in bottom stroles of benzene in bottom stream $=60-47.5=12.5 \mathrm{~mol} / \mathrm{hr}$

Toluene Material Balance

Moles in of toluene $=$ Moles out of toluene

100 * (40/100) $=50$ * $(5 / 100)+$ moles of toluene in bottom
stream
$40-2.5=37.5 \mathrm{~mol} / \mathrm{hr}$

Example (3): Material balances on a distillation

O.M.B

$$
F=D+B
$$

$$
100=40+B
$$

$$
B=60 \mathrm{Kg} / \mathrm{min}
$$

C.M.B on NaOH
$20=5+\mathrm{NaOH} \mathrm{m}^{\circ}$
$\mathrm{NaOH}_{\mathrm{B}}=15 \mathrm{Kg} / \mathrm{min}$
C.M.B on $\mathrm{H}_{2} \underline{O}$

$$
\begin{aligned}
& 80=35+\mathrm{H}_{2} \mathrm{O}_{\mathrm{B}} \\
& \mathrm{H}_{2} \mathrm{O}_{\mathrm{B}}=45 \mathrm{Kg} / \mathrm{min}
\end{aligned}
$$

Example (4): Material balances on a distillation column

 A distillation unit is fed with $30 \mathrm{Kg} / \mathrm{s}$ with a feed containing 30\% ethanol.

If the concentration of ethanol in the distillate is
95% and in bottom product is 2%, Calculate the total amount (mass) of distillate \& bottom product.

$$
\begin{aligned}
& F=D+B \\
& 30=D+B \\
& B=30-D
\end{aligned}
$$

Component mass balance w.r.t ethanol

$$
\begin{aligned}
& \mathrm{F} *\left(\mathrm{x}_{\text {ethanol }}\right)_{\mathrm{F}}=\mathrm{D} *\left(\mathrm{x}_{\text {ethanol }}\right)_{\mathrm{D}}+\mathrm{B} *\left(\mathrm{x}_{\text {ethanol }}\right)_{\mathrm{D}} \\
& 30^{*} 0.3=\mathrm{D}^{*} 0.95+\mathrm{B}^{*} 0.02 \\
& 9=0.095 \mathrm{D}+0.02 \mathrm{~B} \\
& 9=0.095 \mathrm{D}+0.02(30-\mathrm{D}) \\
& 9=0.95 \mathrm{D}+0.6+0.02 \mathrm{D} \\
& 8.4=0.93 \mathrm{D} \\
& \mathrm{~B}=30-9.03
\end{aligned}
$$

Haterial Balance for Reacting system

The Chemical Reaction Equation and Stoichiometry

$$
\begin{aligned}
& \sum \text { mass in }=\sum \text { mass out } \\
& \sum \text { moles in } \neq \sum \text { moles out }
\end{aligned}
$$

MB in Combustion

- Combustion: is a high-temperature exothermic chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products
- Why burning? To get heat energy \rightarrow electrical energy \rightarrow electricity!

MB in Combustion

Reactants:

- Fuel
- Oxygen
- Inerts (don't react)

Products:

- CO_{2}
- $\mathrm{H}_{2} \mathrm{O}$
- Inerts (flow out)
- General idea:
- Fuel + Oxygen $\rightarrow \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}+$ Heat
- Ex: $\mathrm{CH} 4+\mathrm{O} 2 \rightarrow \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$ (not balanced)
- Tips for balancing (order)
- Balance all Carbon atoms
- Balance all Hydrogen Atoms
- Balance all Oxygen Atoms (don't hesitate to use fractions in moles)

MB in Combustion

- Example: Propane
- $\mathrm{C} 3 \mathrm{H} 8+\mathrm{O} 2 \rightarrow \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$
- Balance $\mathrm{C}: \mathrm{C} 3 \mathrm{H} 8+\mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+\mathrm{H} 2 \mathrm{O}$
- Balance $\mathrm{H}: \mathrm{C} 3 \mathrm{H} 8+\mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
- Balance $\mathrm{O}: \mathrm{C} 3 \mathrm{H} 8+5 . \mathrm{O} 2 \rightarrow 3 \mathrm{CO} 2+4 \mathrm{H} 2 \mathrm{O}$
the combustion reaction for Ethane as an

$$
\mathrm{C}_{2} \mathrm{H}_{6}=2 \times 12+6 \times 1=30
$$

example

$$
\mathrm{O}_{2}=2 \times 16=32
$$

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{CO}_{2}=12+2 \times 16=44
$$

$$
\mathrm{H}_{2} \mathrm{O}=2 \times 1+16=18
$$

If the molar mass of $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$

Balance C: $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}$ Balance H: $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}$ Balance O: $\mathrm{C}_{2} \mathrm{H}_{6}+3.5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}$ To get the balanced equation:

$$
\underset{30}{\mathbf{C}_{2} \mathrm{H}_{6}}+\underset{3.5 \times 32}{3.5 \mathrm{O}_{2(\mathrm{~g})}} \rightarrow \underset{2 \times 44}{2 \mathrm{CO}_{2(\mathrm{~g})}}+\underset{3 \times 18}{3 \mathrm{H}_{2} \mathrm{O}}
$$

Mass in $=1 \times 30+3.5 \times 32=142 \mathrm{gm}$
Mass out $=2 \times 44+3 \times 18=142 \mathrm{gm}$

> Remember
> mole in \neq mole out
> $1+3 \cdot 5 \neq 2+3$

Concept of Excess Air

- For optimum combustion, the real amount of combustion air must be greater than that required theoretically. This additional amount of air is called "excess air".
- A certain amount of excess air is needed for complete combustion of fuel.
- Too much excess air leads to heat losses and too little excess air leads to incomplete combustion.
- You can tell if there is too little or too much excess air by measuring the CO_{2} in the flue gases.
- The amount of excess air required depend on various factors like type of fuel used, type of firing system, size of fuel in case of solid fuel etc.

\% of Excess Oxygen

- Express the excess in \%
\% Excess Oxygen $=[$ Oxygen feed - Oxygen (theoretical) $] /[$ Oxygen (theoretical)]
- So a 20% oxygen excess for CH 4 would be:
$20 \%=$ (Oxygen feed -4 mol 02)/ (4 mol 02)
$0.2 \cdot 4=0-4$
$0=4+0.8=4.8$ moles of 02

Use of excess of one component of reactants

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

This is the stoichiometric reaction; but usually we use excess of one of the components.

If we use 20 \% excess of oxygen,
then the reaction will be

$$
\mathrm{CH}_{4}+\left(2+2^{*} 0.2\right) \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+0.4 \mathrm{O}_{2}
$$

Example

Propale $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ burns in this reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
$$

50% excess O_{2}
If 200 g of propane is burned, how many g of $\mathrm{H}_{2} \mathrm{O}$ is produced? Answer: 反 Actual wt.

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}+(5+2.5) \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}+2.5 \mathrm{O} 2 \\
& \mathrm{C}_{3} \mathrm{H}_{8}+7 \cdot 5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}+2.5 \mathrm{O}_{2}
\end{aligned}
$$

Theoretical wt.
Actual wt..

Actual wt. O2 reactant $=\left(200 * 7 \cdot 5^{*} 32\right) / 44=1090.9 \mathrm{gm}$
Actual wt. $\mathrm{H}_{2} \mathrm{O}=\left(200{ }^{*} 4 * 18\right) / 44=327.27 \mathrm{gm}$
Actual wt. $\mathrm{CO}_{2}=\left(200 * 3^{*} 44\right) / 44=600 \mathrm{gm}$
Actual wt. O2 product $=\left(200 * 2.5^{*} 32\right) / 44=363.63 \mathrm{gm}$

Energy Balance Physical Process (Without Chemical Reaction)

i. Without any phase change

The energy lost or gained is given by:

$$
E=\int_{T_{1}}^{T_{2}} m \mathrm{CpdT}
$$

m mass or mole of the fluid (kg) or (kmole)

Ср Specific heat capacity of the fluid ($\mathrm{kJ} / \mathrm{kg} \mathrm{K}$) or ($\mathrm{kJ} / \mathrm{kmol} \mathrm{K}$)
If the specific heat doesn't vary with temperature

$$
E=m \mathbf{C p} \Delta T
$$

Δt \qquad temperature difference

ii. With Phase Change

The energy lost or gained is given by:

Latent energy
The energy that causes change in the phase without change in temperature

$$
\mathbf{E}=\mathbf{m} \mathbf{C p} \Delta \mathbf{T}+\mathbf{m}^{\prime} \times \text { latent heat }
$$

m Total mass of the fluid (kg)
m ‘........ mass of the fluid changing its phase

Heat Exchanger

The energy balance is calculated according to:

Heat lost = Heat gained

Example 1

Calculate the mass of hot oil required to raise the temperature of 200 kg water from $20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$; given that:
$>\mathrm{Cp}$ for water $=4.18 \mathrm{~kg} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
$>\mathrm{Cp}$ for oil $=2.1$
$>$ Initial temperature of oil $=120^{\circ} \mathrm{C}$
$>$ Final temperature of oil $=90^{\circ} \mathrm{C}$

$$
\text { heat lost }=\text { heat gained }
$$

and since no phase change occurs.

$$
\begin{gathered}
\text { m water } * \text { cp water }(70-20)=\text { m oil } * \text { cp oil }(120-90) \\
200 * 4.18 * 50=m \text { oil } * 2.1 * 30 \\
\text { moil }=663.5 \mathrm{~kg} \text {. }
\end{gathered}
$$

Calculate the mass of hot oil used for heating 600 Kg of milk from $4{ }^{\circ} \mathrm{C}$ to $82^{\circ} \mathrm{C}$ given that:

- \quad Cpmilk $=4.3 \mathrm{~kJ} / \mathrm{Kg}^{\circ} \mathrm{C}$,
- Cpoil $=1.8 \mathrm{~kJ} / \mathrm{Kg}^{\circ} \mathrm{C}$,
- Initial temperature of oil $=150^{\circ} \mathrm{C}$,
- Final temperature of oil $=90^{\circ} \mathrm{C}$

$$
\begin{aligned}
& m_{\text {milk }} \times C p_{\text {milk }} \times\left(t_{\text {out }}-t_{\text {in }}\right)=m_{\text {oil }} \times C p_{\text {oil }} \times\left(T_{\text {in }}-T_{\text {out }}\right) \\
& 600 \times 4.3 \times(82-4)=m_{\text {oil }} \times 1.8 \times(150-90) \\
& m_{\text {oil }}=1863.33 \mathrm{Kg}
\end{aligned}
$$

Calculate the mass of component (A) with $\mathrm{Cp}=2.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{C}$, cooling by 200 kg cold water from $50^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$, the cooled water inter the heat exchanger at $4{ }^{\circ} \mathrm{C}$ and out at $20^{\circ} \mathrm{C}$, Cpwater $=4.18 \mathrm{~kJ} / \mathrm{kg} . \mathrm{C}$

$$
\begin{aligned}
& m_{A} \times C p_{A} \times(\text { Tin-Tout })=m_{\text {water }} \times C p_{\text {water }} \times(\text { tout-tin }) \\
& m_{A} \times 2.1 \times(50-25)=200 \times 4.18 \times(20-4) \\
& M_{A}=254.78 \mathrm{Kg}
\end{aligned}
$$

Energy Balance

With Chemical Reaction

The heat of reaction is produced or absorbed during chemical reactions. The value of the enthalpy change reported for a reaction is the amount of heat released or absorbed when reactants are converted to products

Enthalpies of Chemical Change

Enthalpy

- is a state function whose value depends only on the current state of the system, not on the path taken to arrive at that state
- $\Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
- The physical states of reactants and products must be specified as solid (s), liquid (l), gaseous (g), or aqueous $(a q)$ when enthalpy changes are reported

When the heat of reaction is measured under

Standard Thermodynamic Conditions
$\square 1$ atm pressure
\square specified temperature usually 25 C,
$\square 1 M$ concentration for all substance in solution
is called a standard heat of reaction and is indicated by the symbol $\Delta \mathrm{H}^{\circ} r$.

We can calculate the heat of reaction using different methods

1. By the knowledge of heat of formation of both reactants and products.
2. Using Hess's law
3. By using the bond dissociation energy.

1. By the knowledge of heat of formation of both reactants and products

The Standard heat of formation Is the enthalpy change for the formation of 1 mol of a substance in its standard state from its constituent elements in their standard states.

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}^{0}=-74.8 \mathrm{~kJ}
$$

TABLE 8.2 Sta	Standard Heats of Formation for Some Common Substances at $25^{\circ} \mathrm{C}$				
Substance	Formula	$\Delta \boldsymbol{H}_{\mathbf{f}}^{\circ}$ (kJ/mol)	Substance	Formula	$\begin{aligned} & \Delta \boldsymbol{H}^{\circ}{ }_{\mathbf{f}} \\ & (\mathrm{kJ} / \mathrm{mol}) \end{aligned}$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	226.7	Hydrogen chloride	$\mathrm{HCl}(\mathrm{g})$	-92.3
Ammonia	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.1	Iron(III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-824.2
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	Magnesium carbonate	$\mathrm{MgCO}_{3}(\mathrm{~s})$	-1095.8
Carbon monoxide	$\mathrm{CO}(\mathrm{g})$	-110.5	Methane	$\mathrm{CH}_{4}(\mathrm{~g})$	-74.8
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-277.7	Nitric oxide	$\mathrm{NO}(\mathrm{g})$	90.2
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.3	Water (g)	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$	-1260	Water (l)	$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8

N.B. The heat of formation of element is equal zero.

$$
\Delta H^{\circ}{ }_{\text {reaction }}=\Delta H_{\mathrm{f}}^{\circ}(\text { Products })-\Delta H_{\mathrm{f}}^{\circ}(\text { Reactants })
$$

To find ΔH° for the reaction

Subtract the sum of the \ldots from the sum of the heats of formation for heats of formation for these reactants ... these products.
$\Delta H_{\text {reaction }}=\left[c \Delta H^{\circ}(\mathrm{C})+d \Delta H_{\mathrm{f}}^{\circ}(\mathrm{D})+\cdots\right]-\left[a \Delta H_{\mathrm{f}}^{\circ}(\mathrm{A})+b \Delta H^{\circ}{ }_{\mathrm{f}}(\mathrm{B})\right.$

For example, let's calculate ΔH° for the fermentation of glucose to make ethyl alcohol (ethanol), the reaction that occurs during the production of alcoholic beverages:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \longrightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+2 \mathrm{CO}_{2}(g) \quad \Delta H^{\circ}=?
$$

Using the data in Table 8.2 gives the following answer:

$$
\begin{aligned}
\Delta H^{\circ} & =\left[2 \Delta H^{\circ}{ }_{\mathrm{f}}(\text { Ethanol })+2 \Delta H^{\circ}{ }_{\mathrm{f}}\left(\mathrm{CO}_{2}\right)\right]-\left[\Delta H^{\circ}{ }_{\mathrm{f}}(\text { Glucose })\right] \\
& =(2 \mathrm{~mol})(-277.7 \mathrm{~kJ} / \mathrm{mol})+(2 \mathrm{~mol})(-393.5 \mathrm{~kJ} / \mathrm{mol})-(1 \mathrm{~mol})(-1260 \mathrm{~kJ} / \mathrm{mol}) \\
& =-82 \mathrm{~kJ}
\end{aligned}
$$

The fermentation reaction is exothermic by 82 kJ .

The standard heat of reaction ΔH° is calculated according to the equation.

$$
\begin{aligned}
\Delta H^{\circ}= & \sum \text { heat of formation of products } \\
& -\sum \text { heat of formation of reactants. }
\end{aligned}
$$

$$
2 A+3 B \rightarrow 2 C+D
$$

$$
\Delta \mathbf{H}_{\mathrm{r}}^{\mathrm{o}}=\left[2 \times\left(\mathrm{H}_{\mathrm{fC}}\right)+1 \times\left(\mathrm{H}_{\mathrm{fD}}\right)\right]-\left[2 \times\left(\mathrm{H}_{\mathrm{fA}}\right)+3 \times\left(\mathrm{H}_{\mathrm{fB}}\right)\right]
$$

HESS'S LAW The overall enthalpy change for a reaction is equal to the sum of the enthalpy changes for the individual steps in the reactions. Reactants and products in the individual steps can be added and subtracted like algebraic quantities in determining the overall equation

Methane, the main constituent of natural gas, burns in oxygen to yield carbon dioxide and water:

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Use the following information to calculate ΔH° (in kilojoules) for the combustion of methane:

\[

\]

Solution

$$
\begin{aligned}
& \left.\mathrm{CH}_{4}(8)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{2} \mathrm{\theta} \mathrm{\theta}(\mathrm{~g})+\mathrm{H}_{2} \theta(\mathrm{f}) \quad \mathrm{HH}=-284 \mathrm{k}\right) \\
& \mathrm{CH}_{2}\left(\mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \mathrm{SH}^{0}=-518 \mathrm{k}\right) \\
& 2\left[\mathrm{H}_{2} \theta(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] \\
& \left.\left.2\left[\Delta H^{\circ}=-4.0 \mathrm{k}\right]\right]=-88.0 \mathrm{k}\right] \\
& \left.\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{JH}=-800 \mathrm{k}\right)
\end{aligned}
$$

Water gas is the name for the industrially important mixture of CO and H_{2} prepared by passing steam over hot charcoal at $1000^{\circ} \mathrm{C}$:

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

"Water gas"

The hydrogen is then purified and used as a starting material for preparing ammonia. Use the following information to calculate ΔH^{0} (in kilojoules) for the water-gas reaction:

$$
\begin{aligned}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{0}=-393.5 \mathrm{~kJ} \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{0}=-566.0 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned} \quad \Delta \mathrm{H}^{0}=-483.6 \mathrm{~kJ}
$$

Strategy

As in Worked Example 8.6, the idea is to find a combination of the individual reactions whose sum is the desired reaction. In this instance, it's necessary to reverse the second and third steps and to multiply both by $1 / 2$ to make the overall equation balance. In so doing, the sign of the enthalpy changes for those steps must be changed and also multiplied by $1 / 2$. (Alternatively, we could multiply the first step by 2 and then divide the final result by 2.) Note that $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ cancel because they appear on both the right and left sides of reactions.

Solution

$$
\begin{array}{cc}
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H^{\circ}=-393.5 \mathrm{~kJ} \\
1 / 2\left[2 \mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\right] & 1 / 2\left[\Delta H^{\circ}=566.0 \mathrm{~kJ}\right]=283.0 \mathrm{~kJ} \\
1 / 2\left[2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})\right] & 1 / 2\left[\Delta H^{\circ}=483.6 \mathrm{~kJ}\right]=241.8 \mathrm{~kJ} \\
\hline \mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta H^{\circ}=131.3 \mathrm{~kJ}
\end{array}
$$

The water-gas reaction is endothermic by 131.3 kJ .

3. By using the bond dissociation energy.

$$
\text { Forthereaction } X-Y \rightarrow X+Y \quad \Delta H^{0}=D=\text { Bond dissociation energy }
$$

Bond dissociation energies are always positive because energy must always be put into a bond to break it.

$$
\left.\Delta H^{\circ}=D(\text { Reactant bonds })-D \text { (Product bonds }\right)
$$

$\Delta \mathrm{H}$ is called the dissociation energy of the bond $\mathrm{X}-\mathrm{Y}$.
For a certain chemical reaction, the standard heat of reaction $\Delta \mathrm{H}^{\circ}$
$\Delta \mathrm{Ho}=\Sigma \mathrm{D}$ (reactant bonds $-\Sigma \mathrm{D}$ (product bonds)

$$
\text { e.g. } \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

$\left.\Delta \mathrm{H}^{0}=[\mathrm{D}(\mathrm{H}-\mathrm{H})+\mathrm{D}(\mathrm{Cl}-\mathrm{Cl})]-2 \times \mathrm{D}(\mathrm{H}-\mathrm{Cl})\right]$

Use the data in Table 7.1 to find an approximate ΔH° (in kilojoules) for the industrial synthesis of chloroform by reaction of methane with Cl_{2}.

$$
\mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CHCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{~g})
$$

Strategy

Identify all the bonds in the reactants and products, and look up the appropriate bond dissociation energies in Table 7.1. Then subtract the total energy of the product bonds from the total energy of the reactant bonds to find the enthalpy change for the reaction.

Solution

The reactants have four $\mathrm{C}-\mathrm{H}$ bonds and three $\mathrm{Cl}-\mathrm{Cl}$ bonds; the products have one $\mathrm{C}-\mathrm{H}$ bond, three $\mathrm{C}-\mathrm{Cl}$ bonds, and three $\mathrm{H}-\mathrm{Cl}$ bonds. The bond dissociation energies from Table 7.1 are:

$$
\begin{array}{llll}
\mathrm{C}-\mathrm{H} & D=410 \mathrm{~kJ} / \mathrm{mol} & \mathrm{Cl}-\mathrm{Cl} & D=243 \mathrm{~kJ} / \mathrm{mol} \\
\mathrm{C}-\mathrm{Cl} & D=330 \mathrm{~kJ} / \mathrm{mol} & \mathrm{H}-\mathrm{Cl} & D=432 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

Subtracting the etadal energy of the product bonds from the totad eneregy of the reactant bonds gyves the enthalapy change foy the eraction:

$$
\begin{aligned}
\Delta H^{0} & =\left[3 D_{C l-C l}+4 D_{C-H}\right]-\left[D_{C-H}+3 D_{H-C l}+3 D_{C-C(1)}\right] \\
& =[(3 \mathrm{~mol})(243 \mathrm{k} / \mathrm{mol})+(4 \mathrm{~mol})(410 \mathrm{k} / \mathrm{mol})]-[(1 \mathrm{~mol})(410 \mathrm{~kJ} / \mathrm{mol})+ \\
& (3 \mathrm{~mol})(432 \mathrm{k} / / \mathrm{mol})+(3 \mathrm{~mol})(330 \mathrm{k} / \mathrm{mol})] \\
& =-327 \mathrm{k}]
\end{aligned}
$$

The reaction is exothemic by ypproximately 3 30 kJ.

Calculate the standard heat of the following reaction

$$
\mathrm{CH}_{4}+3 \mathrm{Cl}_{2} \rightarrow \mathrm{CHCl}_{3}+3 \mathrm{HCl} .
$$

Given that:

C - H
D = 410 KJ / mole.
C - Cl
$\mathrm{D}=330 \mathrm{KJ} /$ mole.
$\mathrm{Cl}-\mathrm{Cl}$
D = $243 \mathrm{KJ} /$ mole.
H-Cl
$\mathrm{D}=432 \mathrm{KJ} /$ mole.
Solution
$\Delta H^{0}{ }_{r}=[3 \times D(C I-C I)+4 \times D(C-H)]-[D(C-H)+$
$3 \times D(C-C I)+3 \times D(H-C I)]$
$=[3 \times 243+4 \times 410]-[1 \times 410+3 \times 432+3 \times$ $330]=-327 \mathrm{KJ}$.

