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Preface

Physics is the branch of science that describes matter, energy, space and time at the most
fundamental level. Whether you are planning to study engineering, biology, medicine, music,
chemistry or art, some principles of physics are relevant to your field. Physicists look for patterns
in the physical phenomena that occur in the universe. They try to explain what is happening and
they perform experiments to see if the proposed explanation is valid. The goal is to find the most

basic laws that govern the universe and to formulate those laws in the most precise way possible.

In this book, we will present a brief description of some of the physical materials scheduled
for students of preparatory engineering to facilitate the process of retrieval and follow-up, as will
be mentioned in ten chapters that included the properties of matter, waves and heat, which

coincides with what the students studying in the global engineering colleges.

We also thank Dr.Mohamed Ragab Abdou for his efforts and active participation in the
scientific content of this book in this manner.

At the conclusion of this humble work, we hope that all students will benefit and that this

book will serve as a guide for them in this semester.

With our best wishes

Authors,
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CHAPTER (1)
UNITS AND DIMENSIONS

1.1 Introduction

Science and engineering are based on measurements and comparisons. Thus, we need rules about
how things are measured and compared, and we need experiments to establish the units for those
measurements and comparisons. One purpose of physics (and engineering) is to design and conduct those
experiments. For example, physicists strive to develop clocks of extreme accuracy so that any time or time
interval can be precisely determined and compared. You may wonder whether such accuracy is actually
needed or worth the effort. Here is one example of the worth: Without clocks of extreme accuracy, the

Global Positioning System (GPS) that is now vital to worldwide navigation would be useless.

1.2 Units

There are three systems of units, International System (SI or MKS), Gaussian System (CGS) and
British System. Table 1-1 illustrates the four units of basic quantities. A metric system of units has been
used for many years in scientific work and in European countries. In 1960, the general conference of
Weights and Measures, an international authority on units, proposed a revised metric system called the
systéme International d' Unités in French (abbreviated SI). Table 1-2 illustrates the units of basic physical

quantities.

Table 1-1: Different Systems of Units

Systems of Units
Sl or MKS System Gaussian or GCS System British System

Quantity

Length Meter (m) Foot (ft)

Mass Kg slug
Time Sec Sec
Temperature Kelvin Fahrenheit (°F

Length

We can identify length as the distance between two points in space. In 1120, the king of England
decreed that the standard of length in his country would be named the yard and would be precisely equal
to the distance from the tip of his nose to the end of his outstretched arm. Similarly, the original standard
for the foot adopted by the French was the length of the royal foot of King Louis XIV. Neither of these
standards is constant in time; when a new king took the throne, length measurements changed! The French
standard prevailed until 1799, when the legal standard of length in France became the meter (m), defined

1
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as one ten-millionth of the distance from the equator to the North Pole along one particular longitudinal
line that passes through Paris. Notice that this value is an Earth-based standard that does not satisfy the
requirement that it can be used throughout the Universe. As recently as 1960, the length of the meter was
defined as the distance between two lines on a specific platinum—iridium bar stored under controlled
conditions in France. Current requirements of science and technology, however, necessitate more accuracy
than that with which the separation between the lines on the bar can be determined. In the 1960s and
1970s, the meter was defined as 1 650 763.73 wavelengthsl of orange-red light emitted from a krypton-
86 lamp. In October 1983, however, the meter was redefined as the distance traveled by light in vacuum
during a time of 1/299 792 458 second. In effect, this latest definition establishes that the speed of light
in vacuum is precisely 299 792 458 meters per second. This definition of the meter is valid throughout

the Universe based on our assumption that light is the same everywhere.

Table 1-2: Basic Physical Quantities and Their Units
Quantity Unit Name

Length Meter

Mass Kilogram

Time Second

Electric current Ampere

Temperature Kelvin

Amount of substance Mole

Luminous intensity Candela

Mass

The SI fundamental unit of mass, the kilogram (kg), is defined as the mass of a specific platinum-—
iridium alloy cylinder kept at the International Bureau of Weights and Measures at Sévres, France. This
mass standard was established in 1887 and has not been changed since that time because platinum—iridium
is an unusually stable alloy. A duplicate of the Sevres cylinder is kept at the National Institute of Standards

and Technology (NIST) in Gaithersburg, Maryland.
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Time

Before 1967, the standard of time was defined in terms of the mean solar day. (A solar day is the
time interval between successive appearances of the Sun at the highest point it reaches in the sky each
day.) The fundamental unit of a second (s) was defined as (1/60) (1/60) (1/24) of a mean solar day.
This definition is based on the rotation of one planet, the Earth. Therefore, this motion does not provide a
time standard that is universal.

In 1967, the second was redefined to take advantage of the high precision attainable in a device
known as an atomic clock, which measures vibrations of cesium atoms. One second is now defined as
9192 631 770 times the period of vibration of radiation from the cesium-133 atom.

The Sl system is based on powers of ten. Some of the most frequently used prefixes for various

powers of ten and their abbreviation are listed in table 1-3.

Table 1-3: Sl Prefixes and Symbols

Factor Decimal Representation Prefix

1,000,000,000,000,000,000
1,000,000,000,000,000
1,000,000,000,000
1,000,000,000
1,000,000
1,000
100
10
1
0.1
0.01
0.001
0.000 001
0.000 000 001
0.000 000 000 001
0.000 000 000 000 001
0.000 000 000 000 000 001
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1.3 Dimensional Analysis

In physics, the word dimension denotes the physical nature of a quantity. The distance between
two points, for example, can be measured in feet, meters, or furlongs, which are all different ways of
expressing the dimension of length. The quantities that are independent of other quantities are called
fundamental quantities. The units that are used to measure these fundamental quantities are called
fundamental units. And the quantities that are derived using the fundamental quantities are called derived
quantities. The units that are used to measure these derived quantities are called derived units. The symbols

we use in this book to specify the dimensions as illustrated in table 1-4.

Table 1-4: Basic Physical Quantities and Their Dimensions

] Basic quantity Dimension

Uses of Dimensional Analysis

e To establish the relationship between some related physical quantities.
e To find the dimensions of dimensional constants.

e To check the correctness of a physical relation/formula.

Limitations of dimensional analysis

1. Dimensionless quantities cannot be determined by this method. Constant of proportionality cannot be
determined by this method. They can be found either by experiment (or) by theory.

2. This method is not applicable to trigonometric, logarithmic and exponential functions.

3. In the case of physical quantities which are dependent upon more than three physical quantities, this

method will be difficult.

From these basic physical quantities, we can derive the dimensions of some Common Physical

Quantities as illustrated in table 1-5.




Chapter (1)

Table 1-5: Most Common Physical Quantities and Their Dimensions

Physical quantity

Area 4aloe

Length * Width

Dimension

Volume a>>

Length * Width* Height

Density 4slis

Mass/Volume

Linear density 43 gk 48lS

Mass/ Length

Velocity 4e

Distance / Time

Acceleration 4lac

Velocity/ Time

Force = Weight = Tension
Bjj‘ = UJ}J‘ = K|

Mass * Acceleration

Torque g5 ¥ ale

Force * Distance

Pressure -zl

Force / Area

Work or Energy 28all i Jazll

Force * Distance

Power 3_adll

Energy / Time

Intensity 324l

Power / Area

Velocity gradient ae ull & 3

Velocity / Distance

Volumetric rate eaall @il Jaes

Volume / Time

Momentum 48 _all 4,8

Mass * Velocity

Coefficient of viscosity
Al dalae

Example (1.1):

Force * Distance

= Area * Velocity

Units and Dimensions

A body is falling from rest under gravity. Find the relation between the distance traveled by the body and
between the gravitational acceleration and time elapsed.
Solution:

da a*tY
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d=ka*tY
[d] = [k] [a]*[t]”
L= (LT~®*(T)¥
LlTO — Lx Ty—Zx
x=1 andy =2

d=kat?

Example (1.2):

If the viscous force between any two layers in a viscous fluid is given by F = nA

coefficient of viscosity and dv/dh is the velocity gradient. Find the dimension of #.

Solution:
dv
F = T]A%
_Fdh
A
) = 11
[4] [dv]
(MLT=%)(L) e
=B M

~ where # is the

Example (1.3):

Showthatx — x, = v,t + %at2 is dimensionally correct, where x and X, are the final and initial distances,

Vo IS the velocity, a is the acceleration and t is the time.

Solution:
[L.H.S]=[x—x,] =1L

R.H.S t+2at?] H = (LT1T) + (LT~2)(T?) = L
[R.H.S] = [v, Za >

[L.H.S] = [R.H.S]

X=X, =Vt + Zat?is dimensionally correct.
2
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PROBLEMS

1. Newton’s law of universal gravitation is represented by: [F = G%] where, (F) is the magnitude of

the gravitational force exerted by one small object on another, (M) and (m) are the masses of the

objects, and (r) is a distance. Find the dimension of the gravitational constant (G).

2. Use dimensional analysis to determine how the linear speed of particle (v) traveling in a circle depends
on some or all of the following properties; the radius of the circle (r), the angular frequency (w) with
which the particle orbits about the circle and the mass of particle (m). There is no dimensionless

constant involved in the relation.

3. The relationship between kinetic energy (K) and momentum (P) is [K = P?%/2m], where (m) stands
for mass. What is the Sl unit of momentum?

4. Shows which of the following equations are dimensionally correct;

(a) Fp, = pVg ,where (Fp) is the buoyant force that is acting by a fluid of density (p) on an object of

submerged volume (V) and (g) is gravitational acceleration.

(b) P = P, + pgh ,where (P) is the pressure at a point placed at a depth (k) from the surface of a fluid
of density (p), (P,) is the atmospheric pressure and (g) is gravitational acceleration.

Pa*

5. Verify the truth of the relation [% = "—L] where % is the volumetric rate of flow of a liquid of viscosity

coefficient (i) flowing through a tube of radius (a) and length (L) due to pressure difference (P).

6. Find the relation between the velocities of transverse waves produced from the vibration of thin

homogeneous string and between the tension in the string and mass per unit length of it.

7. Obtain an expression for the viscous force acting on a sphere of radius () moving in a viscous fluid

with velocity (v), if the coefficient of viscosity is (n).
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CHAPTER (2)
ELECTROSTATICS

2.1 Introduction

Electrostatics is the study of electric charge at rest. The charges at rest are generated due to the
friction between two insulating bodies, which are rubbed against each other. When a glass rod is rubbed
with a piece of silk, the glass rod acquires the property of attracting small pieces of papers towards its.
Then, glass rod is said to be charged with electricity. The Phenomenon of electricity was discovered in
the year 600 B.C. by a Greek Philosopher "Thales of Miletus".

2.2 Electrical charges and their kinds

It is well known that, any material was created from atoms which contain equal amount of
positive (protons) and negative (electrons) charges, so the atom is named a neutral charge. If the material
has lost or gained an electron or more, hence, it can be named an electric charged object. With the help
of several experiments, it can be concluded that static electricity has two types of electric charges. When
a glass rod is rubbed with silk, glass rod become a positive charge (4+Q) and the silk carry a negative
charge (—Q). On the other hand, when ebonite rod is rubbed with wool, the charge on ebonite is found
to be (—Q) and wool becomes positively charged (4+Q). From figure 2.1a the two glass rods (+Q) repel
each other, similarly two ebonite rods (—Q) repel each other as shown in fig 2.1b. But when a glass rod
rubbed with silk (+Q) it attracts an ebonite rod rubbed with wool (—Q). figure 2.1c. Thus, we say that
bodies having same kind of charge repel each other, while those with an opposite kind of charge attract

each other.

Characteristics of electric charge

(i) Electric charge is quantized; the materials cannot loss or gain a fraction of an electron. Therefore, the
electric charge either positive or negative is exist only as an integer numbers of electron charge (e) i.e.
any positive or negative charge (Q) can be writtenas: Q = tne

where (n = 1,2,3,...) and (e) is a charge of an electron (e = 6 x 107° Coulomb "C")

{:_‘__.-:}ﬂrpu” uuzjzﬁmLa-au I ”TTE‘%
e I .
OLASS b c
a

Figure 2.1: Attraction and repulsion between electric charges
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(ii) Electric charge is additive in nature. It implies that the total charge on an extended body is the
algebraic sum of the positive and negative charges located at different points of the body. Therefore, the

electric charge is a scalar quantity and The S.I. unit of charge is coulomb and it is represented by (C).

(i) Electric charge is always conserved, means charge can neither be created nor be destroyed in
isolation i.e. charge can be created or destroyed only in equal and opposite pairs. Moreover, the charge
can be transferred from substance to other as occurring in radioactivity examples.

92U238—————> 90Th234 + 2He4
Example (2.1):

An electrically neutral penny, of mass m = 3.11 g, contains equal amounts of positive and negative

charge. Assuming the penny is made entirely of copper, what is the magnitude of q of the total positive
(or negative) charge in the penny?
Solution:
Copper (°35Cu) atom has equal positive (Protons) and negative (electrons) charge (= +Ze). For copper
(Z = 29), which means that copper has (29) protons, so each atom has charge (q).

Lq=1Ze
Then the total positive charge in penny (q = NZe), N is number of Cu atom.
To find (N), we multiply the number of moles of copper in the penny by the number of atoms in a mole
(Avogadro's number, N, = 6.20 X 10?3 atoms/mol). The number of moles of copper in the penny is

(m / M), where (M) is the molar mass of copper, 63.5 g/mol. Thus, we have

atoms]| 3.11g

m
N=N,— = [6.02x 1023
M mol 63.5 gl
mo

N = 2.95 x 10?2 atoms
We then find the magnitude of the total positive or negative charge in the penny to be
g=NZe=(295x10%?)(29)(1.6 x 1079 ()
q=137x103C
Example (2.2):

Which is bigger a Coulomb or a charge on an electron? How many electrons in one Coulomb of charge?
Solution:
A Coulomb of charge is bigger than the charge of an electron.

The total number (N) of electrons in one coulomb is

q (1 C) 19
= A = 16 x 109 0) = 0.625 X 10*° electrons

9
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Example (2.3):

Three small identical balls have charges -3 x 10712 ¢,8 x 10712 C and 4 x 10712 C respectively.

They are brought in contact and then separated. Calculate (a) charge on each ball (b) number of electrons
in excess or deficit on each ball after contact.

Solution:

(a) The charge on each ball

+q; + -3)+(8)+ (4)]x107t2C

(b) Since the charge is positive, there is a shortage of electrons on each ball.

g (3x10712()
=-= = 1.875 x 107
e (1.6x10-19C)

Then, the number of electrons = 1.875 x 107 electrons.
Example (2.4):

A polythene (Plastic) piece rubbed with wool is found to have a negative charge of —3.2 x 1077 C.

Estimate the number of electrons transferred from which to which? Is there a transfer of mass from wool
to polythene?
Solution:

The number (N) of electrons transferred to plastic piece from wool

g (=3.2x10770) 12
N = o= 16 x10-90) = 2 X 10°“ electrons

Yes, there is a transfer of mass, whereas the mass of each electron (m, = 9.11 x 10731 kg). Then, the

total mass (M) that transferred to plastic piece is

M=nm, = (2x1012)(9.11 x 10731kg) = 1.8 x 107 18kg

2.3 Coulomb’s law of electrostatic
In 1785, Coulomb measured the force of attraction or repulsion between two electric charges by

using a torsion balance. His observation is known as the Coulomb's Law of electrostatics. It states that;

“The force of attraction or repulsion between the two stationary electric charges is directly
proportional to the product of the magnitude of the charges and inversely proportional to the square

of the distance between them”

Consider that two charges (gq,) and (q,) at a distance (r) apart as shown in figure 2.2, Then force of
attraction or repulsion between the two charges is given by

10
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q qz
Fi; 4—21 * —F21

r

Figure 2.2: The force between two charges

F o q19>2
r2
= F = quzz
r

where, (K) is constant of proportionality, its value depends upon the nature of the medium in which two
charges are located and also the system of units adopted to measure (F), (q1), () and (7). In S.1., charge is

measured in coulomb (C), Force in Newton (N), and distance in meter (m). So that

K =
4re,

=8.997 x 10° N.m?/C?

where (&,) is called absolute electrical permittivity of free space and its equal 8.854 x 1072 C2 N~1 m™2.
It is worth to known the physical meaning of (g,) , it equal numerically the amount of interaction between
the molecules of this medium with electric field that pass through it. Moreover, the modified Coulomb’s law
for a medium (e.qg. plastic or ceramic) could be written as;

_ 1 qiq2
Ate e, T2

The ratio (k = €/¢,) is called the relative permittivity or dielectric constant of the medium. The value of

(x) for air or vacuum is unity.

Example (2.5):
Two equal and similar charges kept 3 cm apart in air repel each other with a force equivalent to weight

of mass 4.5 kg. Find charges in coulomb.

Solution:
Let,q1 =q2,=¢q
Then,
F= k‘hQZ _ qu _
—ET T2 TmE
P mgr?  (4.5kg)(9.8m/s%)(0.03 m)?
= T T (9% 10° Nm?/C?)

= g =+21x10"14C

Example (2.6):

An electron and a proton are at a distance of 10~° m from each other in a free space. Compute the force
between them.

11
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Solution:

uq 9 (1.6 X 10719 ¢)?

— — = (9 x 10° Nm?/C? 23.04 x 10711 N
F=k kz=( ™) 0o m)?

T2

Example (2.7):

Two insulated charged spheres of charges 6.5 x 10~7 C each are separated by a distance of 0.5 m.

Calculate the electrostatic force between them. Also calculate the force (i) when the charges are doubled
and the distance of separation is halved. (if) When the charges are placed in a dielectric medium water
(k = 80).
Solution:

1 qugp (9% 10° Nm?/C?)(6.5 x 1077 C)?
dme, T2 (0.5m)2

(i) If the charge is doubled and separation between them is halved then,

=152%x 102N

1 (291)(2q2)
- 4re, (%)2 - 16[

1 q1q;
dmte, 12

1 ]=O.24N

(if) When placed in water of (k = 80)

F  (1.52x1072N) _
F,=—= =19%x107*N
K 80

Example (2.8):

Compare the magnitude of the electrostatic and gravitational force between an electron and a proton at a

distance (r) apart in hydrogen atom. (Given: me = 9.11 x 1031 kg,m, = 1.67 x 107?" kg,
G = 6.67 x 10011 Nm?kg %, e = 1.6 x 1071° 0).

Solution:

The gravitational force (P;]) between the electron and the proton is found from Newton’s law of

universal gravitation, as
mpm,

Fg =G r2

(1.67 x 10727 kg)(9.11 x 1073t kg)
(5.29 x 1011 m)2

The electric force (F,) between the electron and the proton is found from Coulomb’s law of

E, = (6.67 x 10711 Nm? kg~2) = (3.63%x 10~%") N

electrostatics, as

qrqe (1.6 x 1071° €)(1.60 x 1071° C)
E = = (9 x 10°
e =k r ® ) (5.29 x 1011 m)?2

L
F,=(823x107%) N

12



Chapter (2) Electrostatics

Although both forces seem quite small, let us compare the relative magnitude of these forces by taking
the ratio of the electric force to the gravitational force, that is

F,  (823x107%)N _ (227 % 1099
F, (363x10~*)N 7

This shows that the electrostatic force is (2.27 x 1039) times stronger than gravitational force.
Example (2.9):

Two-point charges (+9e) and (+1e) are kept at a distance of 16 cm from each other. At what point

between these charges, should a third charge (q) to be placed so that it remains in equilibrium?
Solution:
Let a third charge (q) be kept at a distance (x) from (+ 9¢) and (r - x) from (+ e)

“«—  16cm —

F “— X 16 —x—
q,9¢ - @& . 2 L ] —PFq,e
+9e q +e

_ 1 q1q;
dmte, 12

F+9e,q = Fq,e

1 (9e)(q)

dmte,  x?

1 @@

~ 4re (r—x)?

9 1

X2 (r—x)2

xZ

o

9

Take the root of both sides
X
r—x)
X
d6—x) -

3

x = 12cm

The third charge should be placed at a distance of 0.12 m from charge (9e).

13
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2.4 Coulomb’s law — vector form

i T )i T12 +
(i) If (F,;) is the force exerted on charge (g,) by charge (g1) Fiy ‘_-;fh = .q2_> B,
= 414> ,
Fyy = k_2r12 -
LEY) *—> 1 o
F12 FZl

where (#;,) is the unit vector from (q,) to (q,)

(ii) If (Fy7 ) is the force exerted on (q;) due to (q,);

where (7, ) is the unit vector from (g,) to (q,), notice, both (#,,) and (#;,) has the same magnitude but

oppositely directed.

- d192 , . = d1492 .
Fi; =k—7F—(-T12) or Fj; = —k——Ty,
5P 12

Fiz = —Fp
So, the forces exerted by charges on each other are equal in magnitude and opposite in direction.
Principle of superposition

The principle of superposition is to calculate the total electric force experienced by a charge say (gq,) due to other

charges q,,qz . .- qn.

Therefore,
Fl = F12 + F13 + F14, + "‘..Fln =
or
— 1 19192, q19s3 9194 q19n
1 = I‘12+ I‘13+ I‘14+"'+—I‘1
dre, | 15 s % " !

Steps to solve the problems of multi-charges exist at one plane

1. Detriment the charge that calculating the resultant force act on it (from text of problem) 4is&ll aoas
Aladl (i (e Lasie Dy 56 (5 58l dliana ilua 3 al)
2. Plot the origin point of (x — y)-axis at its position. isill s3a e (a5 (w5 95a pui
3. Apply the charge law (like charge repel and unlike charge attract) between other charge and the desired charge.
(i.e find the direction of force component (F,) and (F,) .

Ja 5eSU 5 g8l) Alianal dund 5l 5 A8Y) S Hall daail A3 o34 5 (5 HAYI A eI i3 Al g ) ) 6l gl
4. Calculate the horizontal (F,) and vertical (F;,)component of electric forces values.

23S 058 iy A ygS 8 gl Aleanal dd 1 5 A8V Sl b 2o e

5. Calculate the magnitude of resultant force by using this relation

F = [FZ+E?

14
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Example (2.10):

The figure shows an arrangement of six fixed charged

particles, where a = 2.0cm and 68 = 30°. All six

particles have the same magnitude of charge,

q = 3.0 x 1076C: Their electrical signs are as +qu —qs 7,
indicated. What is the net electrostatic force acting on (q4) due to the other charges?
Solution:
F. = _ 1 q192
12 7 4ne, (2a)?
1 q193
Fi3 =Fi5 = Fjg =
13 15 16 Ame, a?
Fi;cos0 4
J[5'13
-3 ,+Q5
gle/
Fi;sinf Fyssin 0 Fi, ’,’ Fi;  Fig
+ < & g— & & > >
+q: T +44 —Js
7}
Fis
¥ Fiscos @

The above figure is a free body diagram for (q,). It is cleared that F,, and (F,;,) are equal in
magnitude but opposite in direction: thus, those forces cancel.
Inspection of above figure. reveals that the y-components of (F;3) and (F;s) are equal and opposite
direction therefore they cancel each other.
F;5c0s30° — F;5cos30° =0
And that their x components are identical in magnitude and both points in the direction of decreasing
(x). The figure shows also shows that (F;,) points in the direction of increasing x. thus (F;) must be

parallel to the x-axis, its magnitudes are the difference between (F;,) and twice the x-component of
(F13):

15
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Fl == F16 - 2F13 Slne
1 g196 2 qi1q3

= - in 6
dme, a?  4me, a? St
Setting (qg; = ¢q¢) and (8 = 30°), we find
1 2
= 4196 419> $in30° = 0

" 4me, a? 4me, a?
Note that the presence of (q¢) along the line between (q;) and (g,) does not in any way alter the

electrostatic force exerted by (g,) on (q).

Example (2.11):

What are the horizontal and vertical components of the resultant electrostatic force on the charge in the lower

left corner of the squareifq = 0.1 uCanda = 5 cm.

Solution:

F,sin45° ¢

a a a / a

e a
2q >
2q a -2q F, cos45° F —2q

v

F
the repulsion force between charge (2q) and (q) at the corner of square along y — axis

(29)(q)
Fi=k 7
F, = (9 x 10° Nm?/C? 2(0.1 x 107 C)° =0.072 N
1={ mICN\ " wosmez )=
the attraction force between charge (2q) and (q) in the corner on the diagonal of the square.
2
F, = k( q)(qz)
(av2)
2(0.1x 1076 C)?
F, = (9 x 10° Nm2/62)< ( 2) ) = 0.036 N
(0.05v2m)

the attraction force between charge (2q) and (—2q) in the corner on horizontal axis of the square.

16
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. @2q)(2q)
F; = k—(a)2
-6 2
F; = (9 x 10° Nm?/C?) (4(0'(10251;)20 ) =0.144 N

The horizontal component of electric force act on the lower left charge. Force component
Z F, = Fy + F, cos 45° = (0.144 N) + (0.036 cos 45° N) = 0.169 N
The vertical component of electric force act on the lower left charge.

Z F, =F,sin45" — F; = (0.036 sin 45° N) — (0.072 N) = 0.047 N

Example (2.12):

Two tiny conducting balls of identical mass (m) and identical charge (q) hang

from non-conducting threads of length (L). Assume that (@) is so small that 99

(tan @) can be replaced by sin 8; show that, for equilibrium, L L

ZL 1
X = ()3

2me,mg

Solution: ‘ x
The forces effected on each ball (i) tension force (T") in non-conducting thread that make
an angle (8) with vertical plane, (ii) weight of ball and its direction downward and (iii) Teest

repulsion electric force between the charged ball. at equilibrium the net forces act on each

ball equal zero, therefore the horizontal component of resultant fore is zero fe Tsin6

e
ZFX:O:TSIHH:I(F

Also, the vertical component of resultant force is zero,
ZFy =0=Tcosf =mg

mg

Divided the both equations, we get

k 2 2
tanf = 7__ 4
mgx? 4meymgx?
From statement of problem, we get
2 3 2
. x q X q
St an 2L 4Amegmgx? 2L 4megmg

1
x =
2me,mg

17
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2.5 Electric field (E)

The space around an electrical charge in which its effect can be displayed in this region is known
as electric field region. Consider an electric charge (@Q) located in space. If we bring another charge (q,)
near the charge (@), it will acquire a force of attraction or repulsion due to presence of charge (q,). The

force exerted on charge (q,) is named electric field intensity or strengthen that done on charge (q,).

Electric field intensity

 r—
F OI"E

The electric field intensity or strength of electric field at a point may be q,
defined as “It is electric force act on unit positive test charge +q, placed at that @

point”. If (F) is the force acting on test charge (+q,) at any point a, then electric ForE
field intensity may be given by. +4o

E =

§|"1¢

(E) is a vector quantity which has a magnitude and direction, and the S.I unit of (E) is Newton per
Coulomb (N/C). Then, the electric force done by an electric field (E) on a charge (q,) is
F = qu

Electric field due to a point charge

Let (q) is a point charge and (g,) is a test charge is placed at

point (P) at a distance (r) from (gq). According to Coulomb’s E
L
law, the force acting on (g,) due to (q) is TP
99, .
F == k TZ f? ;/,-' T

The electric field at a point (P) is, by definition, the force per unit hr
test charge.

F 1 g¢g
E = — = —_
q, A4me,r?

Lines of Eelectric field: \ / \
Electric field lines are an imaginary straight or v -
curved path along which a unit positive charge /

tends to move in an electric field. Hence, the

R

v

electric fields due to simple arrangements of  Figure 2.3: The electric field lines for a positive point
point charges are shown in figure 2.3. charge, the lines are directed radially outward and are

directed radially inward for a negative point charge

18
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Properties of electric field lines:

1. Electric field lines get out from (+Q) but get into through (—Q)

2. Lines of force start from (+Q) and terminate at (—Q).

3. Electric Lines of forces are imaginary.

4. The tangent to a line of force at any point gives the direction of the electric field (E) at that point.
4. These lines cannot intersect, and crowded near to charges but divergent away of them.

Electric dipole

e Itisamolecule (figure 2.4) has two charges have same value but one of them is Up here the +q
field dominates.

positive (4q) and other is negative (—q) as well as the distance between them ®

iIs (d = 2a) eg.salt (NaCl) molecule and water vapor molecule.

.f\;:
e The axis of dipole; it is straight line pass through the two charges of
dipole. S

 Dipole moment (P): it is product of one of its charge and the distance between =~ Down here the —q
field dominates.

them
P=qd Figure 2.4: An electric dipole

Electric field due to an electric dipole at a point on its axis

As shown in figure 2.5 the total electric field is: 2

E=E —E =kt—k-L

2
' T2

_ q _ q By
_k(z—d/Z)Z k(z+d/2)2

) ()
g2 2z 2z

We can use this approximation and use the binomial equation of negative a

Dipole
41 center
— A, —q

power
d\~? d\~? d d 2d
(1 - Z) - (1 + Z) = [(1 t-- ) - (1 -t )] ~ — Figure 2.5: Electric field due to
an electric dipole at a Point on its
Therefore,

axis

19
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Electric field due to an electric dipole at a point on the equatorial line

For the dipole shown in figure 2.6. ¥
e The electric field (E;) at a point (P) due to the charge
(+q) of the dipole,

_ 1 q
 4me, (a®? +y?)

Notice (r = (a? + y?)%/?)

Ey

e The electric field (E,) at a point (P) due to the charge
(—q) of the dipole

1 g D=~ 7 N
E2 — v o P
4me, (a? +y?) q —q

e The magnitudes of (E,) and (E,) are equal. Figure 2.6: Electric field due to

an electric dipole at a point on the

e Resolving (E;) and (E,) into their horizontal and vertical o
equatorial line.

components as in figure 2.6.
e the resultant electric field at the point (P) due to the dipole in vertical axis is zero
because (E; = E, = F)

= F =E;sinf0 —E,sin0 =0

e the resultant electric field at the point (P) due to the dipole in horizontal axis is

= E=E,cos0 +E,cos0

(E, = E, = E)
E = 2E,cos 8
1
E=2 dme, (@ + ) cos 6
But,cos 8 = a4

v(a*+y?)
F=2 1 q a
dme, (@ +¥%) [(a? + y?)

1 2qa

" 4me, (a?

3
+y?)2
1 P

AT (a2 4 y2);

e where (P) is the electric dipole moment (P = 2qa).

20
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e For a dipole, (a?) is very small when compared to y i.e. (a < y) then, you can neglect (a?)

value from above equation

E= E=k
_41T80y3 or - y3

e The direction of (E) is parallel to the axis of the dipole and directed opposite to the direction of dipole

moment (P).

Electric charge configuration and distribution

(i) Point charge that represented by (Q)
(ii) Linear charge distribution

When the distribution of charge is uniformly along a line,

where (Q) is total charge distributed over a long conductor of length (L) and (1) is leaner charge
density, so the S.1 unit of (1) is C/m. Therefore, the small amount of charge (dq) on this element (dL)
IS

dq = AdL
(iii) Surface Charge distribution
When the distribution of charge is uniformly over a particular area,

Q

G:K

where (Q) is total charge distributed over a particular area (A) and is (o) surface charge density, so the
S.1unit of () is (C/m?).

(iv) Volume charge distribution

When the distribution of charge is uniformly through a certain volume,

Q

P=V

where (Q) is total charge distributed through a particular volume (V) and (p) is volume charge density,
so the S.1 unit of (p) is (C/m?3).

{a) Isolated Charge () Unlite Charges {c) Like Charges
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The electric field of a uniform charged ring along its central axis

Assume a circular ring of radius (a) carries (+Q)

charge that uniformly distributed along its
circumference as in figure 2.7.

Q = A(2nr)
The electric field at (P) due to segment of charge
dq = Adl is

dq 1 Axdl

dE = =
dme,r?>  4me, 12

Figure 2.7: The electric field of a uniform charged ring

The electric field component in x — axis is along its central axis.

E, = dE cosf
The electric field component in y — axis is
E, = dE sinf
Due to symmetry of circular ring, the components of y-axis are Zero.
(The perpendicular components of the field created by any charge element are canceled by the
perpendicular component created by an element on the opposite side of the ring as in figure).
E, = dE sinf — dE sinf = 0

Then, the resultant field at (P) must lie along the x — axis.

1
Notice that, from figure, r = (x%? + a?)z and cos & = x/r, we find that

dE, = dE cos 6 = ki—g.(é) —k

x dq

7'3
All segments of the ring make the same contribution to the field at (P) because they are all equidistant
from this point. Thus, we can integrate to obtain the total field at (P):

x dq X
Ezdexsz s=k 3qu
(x? 4+ a?)2 (x? 4+ a?)2
Qx

3
(x% + a?)2

=k
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PROBLEMS

. The sum of two-point charges is 6 uC. They attract each other with a force of 0.9 N, when kept

40 cm apart in vacuum. Calculate the charges.

. Two small charged spheres repel each other with a force of 2 x 1073 N. The charge on one sphere is
twice that on the other. When one of the charges is moved 10 cm away from the other, the force is

5 x 10~* N. Calculate the charges and the initial distance between them.

. Two identical metal spheres are placed 0.2 m apart. A charge (q4) of 9 uC is placed on one sphere
while a charge (q,) of —3 uC is placed upon the other. (a) What is the force on each of the spheres?
(b) If the two spheres are brought together and touched and then returned to their original positions,

what will be the force on each sphere?

. Two charges lie along the x — axis as in figure. The

positive charge q; = 15uC is at x =2 m, and the

+q3 +q1
positive charge q, = 6 uC is at the origin. Where a ® > X
2m
negative charge (q3) must be placed on the x — axis so
that the resultant electric force on it is zero?
. Charges (qq) and (q) lie on the x — axis at points (x = — a), and (x = a), respectively, (a)

How must (q;) and (q,) be related for the net electrostatic force on charge (Q) placed at

(x = a/2), to be zero?

. Three-point charges, g; = 3 uC,q, = 5uC,q; = 4 uC, are fixed at the corners of a 43

right triangle, as shown in figure. (a) Find the resultant force on charge (q)
and (b) Find the resultant force on charge (q3).

(riz2 = 0.4mandry,; = 0.3m).

. Four equal point charges each of 3 mC are placed at the corners of a square of side length 1 m.

Calculate the electric field at the intersection of the diagonals of the square.

. Two equal and opposite charges of magnitude 0.2 uC are held 15 cm apart (i) what are the
magnitude and direction of (E) at the point midway between the charges? (ii) What is the magnitude

and the direction of the force that would act on an electron placed there?
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9. Figure shows three particles with charges q; = +2Q, q, = —2Q, and q3 = —4Q, each a distance

(d) from the origin. What net electric field is produced at the origin?

1 q3

@
d d
30° 30°
30° x
d

qz

10. In the figure, four charges form the corners of a square and four more charges lie at the midpoints of
the sides of the square. The distance between adjacent charges on the perimeter of the square is (d).

What are the magnitude and direction of the electric field at the center of the square?

3q d q d - 3q

O O O
dl |
1@ o~ @20
d| ' d
O O O

11. In the figure, charges Q; = q and Q, = —2q are fixed a distance “d” apart (i) find (E) at points
(A4), (B), and (C) (b) sketch the electric field lines.
i 4 4 2

+ d @ —— —— —— @ d > > X
A 2 p 2 C

11. In figure, the four particles are fixed in place and have charges q; = q, = +5e, q3 = +3e, and
q4s = —12e. Distance d = 5 mm. What is the magnitude of the net electric field at point P due to

the particles?
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13.

14.

15.

16.

17.

18.

At which points is the net electric field due to these two charges is zero?

An electron is accelerated eastward at 1.8 x 10° m/s? by an electric field. Determine the

magnitude and direction of the electric field.

An electric dipole of charges 2 x 1076 C,—2 x 107° C are separated by a distance 1 cm.
Calculate the electric field due to dipole at a point on its. (i) Axial line 1 m from its center (ii)

equatorial line 1 m from its center.

A neutral water molecule (H,0) in its vapor state has an electric dipole moment of magnitude 6.2 X
1073% ¢/m.(i) How far apart are the molecule’s centers of positive and negative charge? (ii) If the

molecule is placed in an electric field of 1.5 x 10* N/C, what maximum force act on each charge?

In figure shows charged particles on an x — axis: ¢ = —3.2 X Yip

100 Catx= -3mandq= 3.2x10""Catx =+3m. am

What are the (a) magnitude and direction of the net electric field o 3 sm_o .
produced at point Paty = 4.00 m? —q q

The Figure shows two parallel non conducting rings with their central axes along a common line.
Ring 1 has uniform charge (Q4) and radius (R); ring 2 has uniform charge (Q,) and the same radius
(R). The rings are separated by distance d = 3R.The net electric field at point P on the common
line, at distance (R) from ringl, is zero. What is the ratio (Q4/ Q2).

a0 Ring1l Ring?2 *
-!‘J

25



CHAPTER (3)

GAUSS’ LAW



Chapter (3) Gauss' Law

CHAPTER (3)
GAUSS’ LAW

3.1 Introduction

In physics, Gauss's law, also known as Gauss's flux theorem, is a law relating the distribution
of electric charge to the resulting electric field. The surface under consideration may be a closed one
enclosing a volume such as a spherical surface.

The law was first formulated by Joseph-Louis Lagrange in 1773, followed by Carl Friedrich
Gauss in 1813, both in the context of the attraction of ellipsoids. It is one of Maxwell's four equations,
which form the basis of classical electrodynamics. Gauss's law can be used to derive Coulomb's law and
vice versa. and is used to calculate the electric field results for many shapes of electric charge
distribution.

3.2 Electric flux (®)

"Electric flux may be defined as the total number of electric filed lines passing through the
normal surface area placed at this point**

Consider a small area element (dA) of a closed surface area (A4) (figure 3.1). r_ZPV

(E) is the electric field at the area element (dA). Let (0) is the angle between area

vector (dA) and electric field vector (E), then electric flux (@) through the area

element (dA) is given by Figure 3.1: A small
I element of surface
® =¢E.dA = ¢$EdA Cost area (AA)

The above equation represents the electric flux for a small area element (dA), and the normal component
of the electric field.
The electric flux through the whole surface (A), may be calculate by applying the closed integration
in the right side. Over the surface (A),
® = E. Anormai T
It is the number of electric filed lines pass through a normal unit area placed
at certain point (figure 3.2).

The number of electric field lines and/or electric flux is directly ) ) )
Figure 3.2: Field lines

proportional to the magnitude of the charge. representing a uniform
electric field penetrating a
PxQ) = @ :2 plane of area (4)

€o perpendicular to the field.
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3.3 Some physical concepts
1. Gaussian surface (G.S.):
e Itisanimaginary closed surface, with high symmetry and surrounded the charge from all
direction.
e Itis suggested according the shape of electric charge distribution.
2. Closed integration($ dA):
e Itisone kind of integration and applying on closed surface (i.e G. S)
e Its value equals the area of Gaussian surface.
3. Vector area:
Consider a small area element (dA) (figure 3.3) of a closed
surface as shown in figure. The arrow representing the area vector is

drawn perpendicular to the area of the element. If (17) represents unit

vector along the outdrawn normal to the area element, then,

dA = AdA Figure 3.3: A small
element of surface area

Therefore, it is a vector its value is one and its direction outward and (A4) of a closed

normal on Gaussian surface.

4. Scalar product 4
It is the kind of vectors product which obtains a numerical value

positive or negative. The scalar product depends on the angle between

two vectors (figure 3.4) and general formula can be written as

>

AOB= |Z|x|§| cos0 "

Therefore; Figure 3.4: (4) and
§=0=A0B =|4|.|B| cos 0° = 4B (B) vectors
7] =7T=>/T@§= |/T|.|§|cosn° = —AB
0 =90° = A O B = |4|.|B| cos 90° = 0

5. The two-shell theorem of spherical conductor.

(i) The charges on the surface of metallic spherical shell have attracted or repelled until they
uniformly distributed on its surface. Moreover, these charges are accumulated outside the surface
of metallic shell and can be imagined them as if were concentrated at its center.

(i1) A charged metallic spherical shell does not generate an electrostatic force on any charged particle

that is located inside this metallic shell. So, the electric field (E) inside the metallic shell is equal
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zero this because the charge is equal zero (Q = 0) inside it. Furthermore, if excess charge is
placed on a spherical shell that is made of conducting material, this excess charge spreads
uniformly outside the (external) surface. For example, if we place excess electrons on a spherical
metal shell, those electrons repel one another and tend to move apart, spreading over the available
surface until they are uniformly distributed.

3.4 Formula of Gauss’ law

® = Qincs _ ygﬁﬂ
&o

where, (@) is electric flux, (Q;,) is sum of electric charge within Gaussian surface, ¢, = 8.85 X

10712 ¢2/Nm? is electric permittivity of air, (E )is electric field vector, (d4) is vector area and ¢ is
closed integration that apply on Gaussian closed surface.

Example (3.1):

A point charge of 1.8 pc is at the center of a cubical Gaussian surface 55 cm on edge. What is the net

electric flux through the surface?
Solution:

q (1.8 % 1076 C)

(p = — =
g (8.854 x 10712 (C%2/Nm?)

=2 % 105 N.m?/C

Procedure for deriving or solving the Gauss’ law problem:
Y Al Gl 098 aladiialy Ae ) gal) ciliadil) Jilua Jal
1. Detriment the shape of electric charge (Al JSG aaad)

e Point charge or charged sphere (Q)
e Charged line or charged cylinder Q = Al
e Charged surface (plate, plane, sheet) Q = cA
2. Assume Gaussian surface according to the shape of charge
e jsall danlll o) ginY (o sla ) Blae b L)

3. Apply Gauss law o st O 58 (Bl
o = dinGs _ f E.dA®
L))
Qings _
——=0EdAcos0 =E pdA
€o
Qincs —EA
€o

4. Find the formula of electric field (E).
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3.5 Derivation of Coulomb’ s law by applying Gauss’ law:

To calculate the electric field at a distance () from a point charge (q) using __ Gaussian
surface
Gauss’ law consider a spherical Gaussian surface has a radius (r), and the \,-\‘
- — . \f J —— :
angle () between (E) and (dA) is Zero : L =
izfﬁaz
€o

Figure: 3.5: Gauss’

i:%EdACOSe:EﬁdA:EA Ianorsphere

€o
i=E(47Tr2)
EO
1
4mte, r r

3.6 Electric field due to charged line or cylinder (Cylindrical symmetry)

e The electric field at a distance () from an infinite line of charges of constant e |
charge per unit length (1) = q = Al '\ R
e Gaussian surface is a cylinder of radius (r) and its length is (L). the total flux .
from both circular bases is zero because the angle (6) between (E) and (dA)
is (90°)
cb:j;ﬁ.ﬂszEdAcosf)oozo :
. : . Figure 3.6:
e Then, all electric flux gets from the side area of cylinder because the angle (0) Cylindrical
between (E) and (dA4) is Zero in all position. Symmetry
i=¢§ﬂ
€o
Al
—=¢EdAc059=E¢dA
€o
Al
— = E(4nrl)
€o
1 2 A
= E = = or E =2k—-
2w, T r

Example (3.2):
An infinite line of charge produces a field of 4.5 x 10* N/C at a distance of 2 m. Calculate the linear

charge density.
Solution:

A
E=-o——=1=12nerE = (2m)(8.854 x 1072 €2/Nm?)(2 m)(4.5 x 10* N/C) = 5uC/m
o
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3.7 Electric field due to charged planer symmetry
(i) For conducting sheet (conducting material)

e This material has a free charge so it concentrated on one face of

sheet.

X
\)(

T o
Sr-f x
X

X ok X, Sx
X X
X
%
X
m

4

X X X xfxiX
1N

e To find the electric field due to an infinite-conducting sheet that

X X X x x

has a uniform surface charge density (o).
Gaussian

q — O_A surface

Figure 3.7: Electric field for

e Gaussian surface is a cylinder one of its base on the ]
conducting sheet

charged sheet as in figure 3.7, and the angle (6) between

(E) and (dA) is Zero

i=35§.d7f
€o
gA
—=j€EdAcos@=EjgdA
=)
GA—E(A)
g
o
S E=—
EO

(i1) For non-conducting Sheet (Insulating material)

e This material hasn’t free charge so it can be placed on both

faces of sheet.

e To find the electric field due to an infinite non-conducting A <—=—

b b
l
.

sheet that has a uniform surface charge density (o) on

+

each face of sheet Figure 3.8: Electric field for non

q = oA conducting sheet
e Gaussian surface is two cylinder their one of base on both

sides of the sheet as in figure, and the angle (6) between @ and (ﬂ) is Zero

i:fﬁ.a’
&o
oA

- =§EdAcosH+fEdAcost9=2E?gdA
0

o).\
— =2E(4)
&o

o
= F =

2¢g,

30



Chapter (3) Gauss' Law

(iii) Electric field due to two parallel conducting charged sheets

e Consider two plane parallel infinite non-conducting sheets with equal and "+° -
+
opposite charge densities (+o) and (+a) as shown in figure. N— -
+ El(+] o — E1{+]
e The electric field on either side of a plane is (E = g /2¢,) , directed 1 . P,
outward (if the charge is positive) or inward (if the charge is | g -|+— EO
+ -
negative). + -
> At a point (P;) between the two sheets, Figure 3.9: Two parallel
o o o infinite  non-conducting
E=E +E,= e + 2 " & (twords the right) sheets
> At a point (P,) outside the two sheets,
E=E —E, = 7 7 _ 0
I P P
Notice; If the two plate are conducting sheets
» At a point (P;) between the two sheets,
E=E —-E, = c_Z_ 0
=Ei-Ep= =
» At a point (P,)outside the two sheets,
o o0 20
E=E, +E, =—+—=— (twords the left ward)
80 80 80
Example (3.3):
The figure shows portions of two large non-conducting sheets, each with a fixed uniform
charge on one side. The magnitude of the surface charge densities is o, = 6.8 uC/m?
and o, = 4.3 uC/m?. Find the electric field, (i) between the Sheets, (ii) to the right of
the sheets and (iii) to the left of the sheets.
- O-( +)
Solution: % % oy
Em: (,,: E.,
E(—): E_, Eo
(i) Between two sheets (Towards +ve x — axis)
0y 0y (4346.8)x107°C/m? .
Evet =E(y+E = =6.2X10°N/C
bet = £ T B 2¢,  2¢&, 2(8.854 x 10~12 C2/Nm?) /
(ii) At the right from two sheet (Towards +ve x — axis)
O'(_,_) O'(_) (68 — 43) X 10_6 C/mz 5
Erignt = Ecxy —E(y = - = =14X%x10°N/C
right = () T F) T 26 2, 2(8.854 x 10712 C2/Nm?) /
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(iii) At the left from two sheet (Towards —ve x — axis)

E g g 00 Owm (43-68)x107°C/m* o
right = ) M T e, 2e, 2(8.854 x 10712 C2/Nm?) ~ /

Example (3.4):
The magnitude of the average electric field normally present in the earth’s atmosphere just above the surface of the
earth is about 150 N/C, directed downward. What is the total net surface charge of the earth? Assume the earth to

be a conductor with a uniform surface charge density

Solution:
E = 0-/80

—-12 CZ N -9 2
=0 =g =(8854x 1072 <1SOE> =1.33x 107° C/m

q =0A=o0(4nr?) = (1.33 x 107° C/m?)(4m)(6.37 X 10° m)? = —6.8 x 10° C

Example (3.5):

In the figure, a small, non-conducting ball of mass m = 1 mg and uniformly distributed o
charge ¢ = 2 x 1078 C hangs from an insulating thread that makes an angle 8 = 30° with a
vertical, uniformly charged non-conducting sheet. Considering the ball’ s weight and assuming

that the sheet extends far in all directions, calculate the surface charge density ¢ of the sh