
Higher Technological Institute
Tenth of Ramadan City

Computer science department

Computer Programming
Introduction to programming with python

Author:
Dr. Rania Ragb Hussin

St
ru

ct
ur

e
pr

og
ra

m
m

in
g

http://www.hti.edu.eg/

1

Index
Table of Contents
I. OVERVIEW OF PROGRAMMING ... 4

II. STRUCTURE OF A PYTHON PROGRAM .. 8

Python Operators ... 12

III. ELEMENTS OF PYTHON .. 12

Numeric ... 13

Tuple .. 17

Dictionary .. 20

UNIT I – Question Bank .. 24

I. PYTHON INTERPRETER ... 26

II. OPERATORS IN PYTHON .. 35

UNIT II – Question Bank .. 44

I. INPUT AND OUTPUT STATEMENTS ... 47

2) raw_input() func�on .. 48

II. CONTROL STATEMENTS .. 50

Example: how to use a loop within a loop a nested for loop ... 56

EXIT() FUNCTION .. 56

DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS .. 57

III. FUNCTIONS .. 59

Function Arguments ... 60

Required Arguments ... 60

Keyword arguments ... 61

Default arguments .. 61

Variable-length arguments ... 62

Anonymous Functions – Lambda Functions ... 63

Syntax .. 63

The return Statement ... 63

Scope of Variables ... 63

Global vs. Local variables ... 63

Default arguments .. 64

IV. Python Errors and Exceptions Handling ... 65

UNIT III – Question Bank ... 70

I. ITERATION AND RECURSION ... 72

2

CONDITIONAL EXECUTION .. 73

ALTERNATIVE EXECUTION ... 73

CHAINED CONDITIONALS ... 74

NESTED CONDITIONALS ... 75

THE return STATEMENT ... 75

II. RECURSION ... 76

STACK DIAGRAM .. 77

STACK DIAGRAMS FOR RECURSIVE FUNCTIONS ... 78

INFINITE RECURSION ... 79

ABBREVIATED ASSIGNMENT ... 79

III. THE while STATEMENT ... 80

v = v + 1 return ss ... 80

IV. TABLES ... 81

TWO-DIMENSIONAL TABLES .. 82

UNIT IV – Question Bank ... 86

I. STRINGS ... 88

II. LISTS ... 98

III. STRINGS AND LISTS .. 108

UNIT V – Question Bank .. 111

3

Unite 1

Programming Overview

4

 I. OVERVIEW OF PROGRAMMING

A programming language is a formal computer language or constructed language designed to
communicate instructions to a machine, particularly a computer. Programming languages can be used
to create programs to control the behaviour of a machine or to express algorithms.

INTRODUCTION OF PYTHON

Python is an object-oriented, high level language, interpreted, dynamic and multipurpose programming
language.
Python is easy to learn yet powerful and versatile scripting language which makes it attractive for
Application Development.
Python's syntax and dynamic typing with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas.
Python supports multiple programming pattern, including object oriented programming, imperative and
functional programming or procedural styles.
Python is not intended to work on special area such as web programming. That is why it is known as
multipurpose because it can be used with web, enterprise, 3D CAD etc.
We don't need to use data types to declare variable because it is dynamically typed so we can write
a=10 to declare an integer value in a variable.
Python makes the development and debugging fast because there is no compilation step included in
python development and edit-test-debug cycle is very fast.
It is used for GUI and database programming, client- and server-side web programming, and
application testing.
It is used by scientists writing applications for the world's fastest supercomputers and by children first
learning to program.

HISTORY OF PYTHON

Python was conceptualized by Guido Van Rossum in the late 1980s. Rossum published the first version
of Python code (0.9.0) in February 1991 at the CWI (Centrum Wiskunde & Informatica) in the
Netherlands, Amsterdam. Python is derived from ABC programming language, which is a
generalpurpose programming language that had been developed at the CWI. Rossum chose the name
"Python", since he was a big fan of Monty Python's Flying Circus. Python is now maintained by a core
development team at the institute, although Rossum still holds a vital role in directing its progress.

COMPILER vs INTERPRETER

An interpreter is a program that reads and executes code. This includes source code, pre-compiled code,
and scripts. Common interpreters include Perl, Python, and Ruby interpreters, which execute Perl,
Python, and Ruby code respectively.

Interpreters and compilers are similar, since they both recognize and process source code.

However, a compiler does not execute the code like and interpreter does. Instead, a compiler simply
converts the source code into machine code, which can be run directly by the operating system as an
executable program.

5

Interpreters bypass the compilation process and execute the code directly.
Interpreters are commonly installed on Web servers, which allows developers to run executable scripts
within their webpages. These scripts can be easily edited and saved without the need to recompile the
code. Without an interpreter, the source code serves as a plain text file rather than an executable
program.

PYTHON VERSIONS

• Python 1.0
• Python 2.0
• Python 3.0

PYTHON FEATURES

• Easy to learn, easy to read and easy to maintain.
• Portable: It can run on various hardware platforms and has the same interface on all platforms.
• Extendable: You can add low-level modules to the Python interpreter.
• Scalable: Python provides a good structure and support for large programs. Python has support

for an interactive mode of testing and debugging.
• Python has a broad standard library cross-platform.

6

• Everything in Python is an object: variables, functions, even code. Every object has an ID, a
type, and a value.

• Python provides interfaces to all major commercial databases.
• Python supports functional and structured programming methods as well as OOP.
• Python provides very high-level dynamic data types and supports dynamic type checking.
• Python supports GUI applications
• Python supports automatic garbage collection.
• Python can be easily integrated with C, C++, and Java.

APPLICATIONS OF PYTHON

• Machine Learning
• GUI Applications (like Kivy, Tkinter, PyQt etc.)
• Web frameworks like Django (used by YouTube, Instagram, Dropbox)
• Image processing (like OpenCV, Pillow)
• Web scraping (like Scrapy, BeautifulSoup, Selenium)
• Test frameworks
• Multimedia
• Scientific computing
• Text processing

TYPES OF PROGRAM ERRORS

We distinguish between the following types of errors:

1. Syntax errors: errors due to the fact that the syntax of the language is not respected.
2. Semantic errors: errors due to an improper use of program statements.
3. Logical errors: errors due to the fact that the specification is not respected.

From the point of view of when errors are detected, we distinguish:

1. Compile time errors: syntax errors and static semantic errors indicated by the compiler.
2. Runtime errors: dynamic semantic errors, and logical errors, that cannot be detected by the

compiler (debugging).

Syntax errors

Syntax errors are due to the fact that the syntax of the Java language is not respected. Let
us see some examples of syntax errors.

Example 1: Missing semicolon:
int a = 5 // semicolon is missing Compiler
message:
Example.java:20: ';' expected
int a = 5

https://www.geeksforgeeks.org/machine-learning/
https://www.geeksforgeeks.org/kivy-tutorial/
https://www.geeksforgeeks.org/kivy-tutorial/
https://www.geeksforgeeks.org/django-tutorial/
https://www.geeksforgeeks.org/django-tutorial/
https://www.geeksforgeeks.org/django-tutorial/
https://www.geeksforgeeks.org/opencv-python-tutorial/
https://www.geeksforgeeks.org/opencv-python-tutorial/

7

Example 2: Errors in expressions: x = (3 + 5; // missing
closing parenthesis ')' y = 3 + * 5; // missing
argument between '+' and '*'

Semantic errors

Semantic errors indicate an improper use of Java statements. Let
us see some examples of semantic errors.

Example 1: Use of a non-initialized variable:
int i;
i++; // the variable i is not initialized Example 2: Type

incompatibility: int a = "hello"; // the types String and int are not
compatible Example 3: Errors in expressions: String s = "...";

int a = 5 - s; // the - operator does not support arguments of type String Example
4: Unknown references:

Strin x; // Strin is not defined
system.out.println("hello"); // system is not defined
String s;
s.println(); // println is not a method of the class String

Example 5: Array index out of range (dynamic semantic error) int[]
v = new int[10];
v[10] = 100; // 10 is not a legal index for an array of 10 elements

The array v has been created with 10 elements (with indexes ranging from 0 to 9), and we are trying
to access the element with index 10, which does not exist. This type of error is not caught during
compilation, but causes an exception to be thrown at runtime.

Logical errors

Logical errors are caused by the fact that the software specification is not respected. The program is
compiled and executed without errors, but does not generate the requested result.
Let us see some examples of logical errors:
Example 1: Errors in the performed computation: public

static int sum(int a, int b) {
 return a - b ;
}
// this method returns the wrong value wrt the specification that requires

// to sum two integers Example 2: Non termination: String s = br.readLine(); while
(s != null) { System.out.println(s);

} // this loop does not terminate
Errors detected by the compiler and runtime errors

All syntax errors and some of the semantic errors (the static semantic errors) are detected by the
compiler, which generates a message indicating the type of error and the position in the Java source
file where the error occurred (notice that the actual error could have occurred before the position
signaled by the compiler).
Other semantic errors (the dynamic semantic errors) and the logical errors cannot be detected by the
compiler, and hence they are detected only when the program is executed.
Let us see some examples of errors detected at runtime:

8

Example 1: Division by zero:
int a, b, x; a = 10;
b = Integer.parseInt(kb.readLine()); x
= a / b; //ERROR if b = 0
This error occurs only for a certain configuration of the input (b = 0).

Example 2: File does not exist:
FileReader f = new FileReader("pippo.txt");
The error occurs only if the file pippo.txt does not exist on the harddisk. Example

3: Dereferencing of a null reference:
String s, t; s =
null; t =
s.concat("a");

The concat() method cannot be applied to a reference whose value is null. Note that the
above code is syntactically correct, since the concat() method is correctly applied to a
reference of type String, but it contains a dynamic semantic error due the fact that a
method cannot be applied to a reference whose value is null.

 II. STRUCTURE OF A PYTHON PROGRAM

Python Statements

In general, the interpreter reads and executes the statements line by line i.e. sequentially. Though, there
are some statements that can alter this behaviour like conditional statements.
Mostly, python statements are written in such a format that one statement is only written in a single
line. The interpreter considers the ‘new line character’ as the terminator of one instruction.

Example 1: print('Welcome to Geeks for
Geeks')

Instructions that a Python interpreter can execute are called statements.
For example, a = 1 is an assignment statement.

if statement, for statement,
 while statement etc. 3wexc

9

Python Indentation
Most of the programming languages like C, C++, Java use braces { } to define a block of code. Python
uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first unindented
line. The amount of indentation is up to you, but it must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an example.

 for i in range(1,11):

 print(i)
if i == 5:
break

https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/for-loop

10

Comments are very important while writing a program. It describes what's going on inside a program
so that a person looking at the source code does not have a hard time figuring it out. You might forget
the key details of the program you just wrote in a month's time. So taking time to explain these concepts
in form of comments is always fruitful.

In Python, we use the hash (#) symbol to start writing a comment.

It extends up to the newline character. Comments are for programmers for better understanding of a
program. Python Interpreter ignores comment.

#This is a comment #print
out Hello print('Hello')

Multi-line comments
 If we have comments that extend multiple lines, one way of doing it is to use hash (#) in the beginning

of each line. For example:

#This is a long comment
#and it extends
#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

The enforcement of indentation in Python makes the code look neat and clean. This results into Python
programs that look similar and consistent.

Indentation can be ignored in line continuation. But it's a good idea to always indent. It makes the code
more readable. For example:

if True :
 print ('Hello')
 a = 5

and

if True : print ('Hello' ;) a = 5

both are valid and do the same thing. But the former style is clearer.
Incorrect indentation will result into IndentationError.

Python Comments

11

These triple quotes are generally used for multi-line strings. But they can be used as multi-line comment
as well. Unless they are not docstrings, they do not generate any extra code.

"""This is also a perfect
example of multi-line
comments"""

Python Variables

A variable is a named location used to store data in the memory. It is helpful to think of variables as a
container that holds data which can be changed later throughout programming.

Example 1: N1=10
 N2=10.5 Example

2:

 x = y = z = "same" # assign the same value to multiple variables at once

print (x)

d = 0x12c #Hexadecimal Literal

#Float Literal
float_1 = 10.5
float_2 = 1.5e2

print (y)
print (z)

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of constants as
containers that hold information which cannot be ch anged later.

Example 1:

PI = 3.14
GRAVITY = 9.8

Literals

Literal is a raw data given in a variable or constant. In Python, there are various types of literals they
are as follows:

Example 1:
a = 0b1010 #Binary Literals
b = 100 #Decimal Literal
c = 0o310 #Octal Literal

12

#Complex Literal
x = 3.14j

Python Operators

Operators are special symbols in Python that carry out arithmetic or logical computation. The value
that the operator operates on is called the operand.

Operators are used to perform operations on variables and values.

• Arithmetic operators
• Relational operators
• Logical operators Bitwise operators
• Assignment operators
• Special operators

 Identity operators
 Membership operators

Example:
Python Program to find the area of triangle

a = 5
b = 6
c = 7

Uncomment below to take inputs from the user
a = float(input('Enter first side: '))
b = float(input('Enter second side: '))
c = float(input('Enter third side: '))

calculate the semi-perimeter s
= (a + b + c) / 2

calculate the area
area = (s*(s-a)*(s-b)*(s-c)) ** 0.5 print('The
area of the triangle is %0.2f' %area)

Output:
The area of the triangle is 14.70
 III. ELEMENTS OF PYTHON

• A Python program, sometimes called a script, is a sequence of definitions and commands.
• These definitions are evaluated and the commands are executed by the Python interpreter in

something called the shell.
• Typically, a new shell is created whenever execution of a program begins. In most cases, a

window is associated with the shell.
• A command, often called a statement, instructs the interpreter to do something.

13

The basic elements of Python are:

1. Keywords: and, assert, break, class, continue, def,del, elif, else, except, exec, finally, for,
from, global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while, with, yield

2. Operators: + - * / % ** // > & | ^ ~ >= <> != ==
3. Delimiters: () [] { }, :. ' = ; += -= *= /= //= %= &= |= ^= >>= <<= **=
4. Data types: Numeric, Dictionary, Boolean, Set, Strings, List, Tuple

Mutable and Immutable data types/objects:

• Example for mutable data types are: List, Set and Dictionary
• Example for Immutable data types are: Strings, tuple, int, float, bool,Unicode.

Numeric

In Python, numeric data type represent the data which has numeric value. Numeric value can be
interger, floating number or even complex numbers. These
 values are defined as int, float and complex class in Python.

• Integers – This value is represented by int class. It contains positive or negative whole numbers
(without fraction or decimal). In Python there is no limit to how long an integer value can be.

• Float – This value is represented by float class. It is a real number with floating point
representation. It is specified by a decimal point. Optionally, the character e or E followed by a
positive or negative integer may be appended to specify scientific notation.

• Complex Numbers – Complex number is represented by complex class. It is specified as (real
part) + (imaginary part)j. For example – 2+3j

Python program to demonstrate numeric value

a = 5
print("Type of a: ", type(a)) b
= 5.0
print("\nType of b: ", type(b))
c = 2 + 4j print("\nType of c:
", type(c))

14

OUTPUT:
Type of a: <class 'int'>
Type of b: <class 'float'>
Type of c: <class 'complex'>

Strings

In Python, Updation or deletion of characters from a String is not allowed. This will cause an error
because item assignment or item deletion from a String is not supported. This is because Strings are
immutable, hence elements of a String cannot be changed once it has been assigned.

Program:
String1 = "IIIBSC STUDENTS"
print("Initial String: ") print(String1)

Printing First character
print("\nFirst character of String is: ") print(String1[0])

Printing Last character
print("\nLast character of String is: ") print(String1[-1])

print("\n8th char: ") print(String1[8])
Updation or deletion of characters from a String is not allowed

Output:
Initial String:
IIIBSC STUDENTS

First character of String is: I

Last character of String is: S

8th char: T

Lists are just like the arrays, declared in other languages.
Lists need not be homogeneous always which makes it the most powerful tool in Python.
A single list may contain DataTypes like Integers, Strings, as well as Objects.
Lists are mutable, and hence, they can be altered even after their creation.
List in Python are ordered and have a definite count.
The elements in a list are indexed according to a definite sequence and the indexing of a list is done
with 0 being the first index.
Each element in the list has its definite place in the list, which allows duplicating of elements in the
list, with each element having its own distinct place and credibility. It is represented by list class.

Creating a list

Lists in Python can be created by just placing the sequence inside the square brackets[].

Lists

15

#Python program to demonstrate Creation of List

Creating a List
List = []
print("Intial blank List: ") print(List)

Creating a List with the use of a String
List = ['IIIBSCSTUDENTS']
print("\nList with the use of String: ") print(List)

Creating a List with the use of multiple values
List = ["III", "BSC", "STUDENTS"]
print("\nList containing multiple values:
") print(List[0]) print(List[2])

Creating a Multi-Dimensional List (By Nesting a list inside a List)
List = [['III', 'BSC'], ['STUDENTS']]
print("\nMulti-Dimensional List: ")
print(List)

Methods used in a List

#Append an element (ADD an element) List.append(4)
print("\nList after Adding a number: ") print(List)

Addition of Element at specific Position (using Insert Method)
List.insert(2, 12) print(List)

List.insert(0, 'Geeks')
print("\nList after performing Insert Operation: ") print(List)
Addition of multiple elements to the List at the end (using Extend Method)
List.extend([8, 'Geeks', 'Always'])
print("\nList after performing Extend Operation: ") print(List)

accessing a element from the list using index number print("Accessing
element from the list")
print(List[0]) print(List[2])

accessing a element using negative indexing print("Accessing
element using negative indexing")

print the last element of list print(List[-1])

print the third last element of list print(List[-3])

List1=[1,2,3,4,5,6,7,8]
print("Original List")
print(List1)
Removing elements from List using Remove() method

16

List1.remove(5)

print("\nList after Removal of element: ") print(List1)

List1.pop()
print("\nList after popping an element: ") print(List1)

Removing element at a specific location from the set using the pop() method
List1.pop(2) print("\nList after popping a
specific element: ") print(List1)

Output:

Intial blank List: []

List with the use of String: ['IIIBSCSTUDENTS']

List containing multiple values:
III
STUDENTS
Multi-Dimensional List: [['III',
'BSC'], ['STUDENTS']]

List after Adding a number:
[['III', 'BSC'], ['STUDENTS'], 4] [['III',
'BSC'], ['STUDENTS'], 12, 4]

List after performing Insert Operation: ['Geeks',
['III', 'BSC'], ['STUDENTS'], 12, 4]

List after performing Extend Operation:
['Geeks', ['III', 'BSC'], ['STUDENTS'], 12, 4, 8, 'Geeks', 'Always']
Accessing element from the list
Geeks
['STUDENTS']
Accessing element using negative indexing
Always
8
Original List
[1, 2, 3, 4, 5, 6, 7, 8]

List after Removal of element: [1,
2, 3, 4, 6, 7, 8]

List after popping an element: [1,
2, 3, 4, 6, 7]

List after popping a specific element:

17

[1, 2, 4, 6, 7]

Adding Elements to a List

Elements can be added to the List by using built-in append() function.
Only one element at a time can be added to the list by using append() method.
For addition of element at the desired position, insert() method is used.
Other than append() and insert() methods. extend() method is used to add multiple
elements at the same time at the end of the list.

Removing Elements from the List

Elements can be removed from the List by using built-in remove() function.
 Pop() function can also be used to remove and return an element from the set, but by default it removes
only the last element of the set, to remove element from a specific position of the List, index of the
element is passed as an argument to the pop() method.
Remove method in List will only remove the first occurrence of the searched element.
Tuple

Tuple is an ordered collection of Python objects much like a list. The sequence of values stored in a
tuple can be of any type, and they are indexed by integers. The important difference between a list
and a tuple is that tuples are immutable. Also, Tuples are hashable whereas lists are not. It is
represented by tuple class.

Creating a Tuple In Python, tuples are created by placing
sequence of values separated by ‘comma’ with or without the use of parentheses for grouping of data
sequence. Tuples can contain any number of elements and of any datatype (like strings, integers, list,
etc.). Tuples can also be created with a single element, but it is a bit tricky. Having one element in the
parentheses is not sufficient, there must be a trailing ‘comma’ to make it a tuple.
In python, deletion or updation of a tuple is not allowed.

Python program to demonstrate creation of Tuple

Creating an empty tuple
Tuple1 = ()
print("Initial empty Tuple: ") print
(Tuple1)

Creating a Tuple with the use of Strings Tuple1
= ('Geeks', 'For')
print("\nTuple with the use of String: ") print(Tuple1)

Creating a Tuple with the use of list
list1 = [1, 2, 4, 5, 6] print("\nTuple
using List: ") print(tuple(list1))

Creating a Tuple with the use of built-in function
Tuple1 = tuple('Geeks')
print("\nTuple with the use of function: ") print(Tuple1)

18

Creating a Tuple with nested tuples
Tuple1 = (0, 1, 2, 3)
Tuple2 = ('python', 'geek') Tuple3
= (Tuple1, Tuple2) print("\nTuple
with nested tuples: ") print(Tuple3)

Accessing element using indexing
print("Frist element of tuple")
print(Tuple1[0])

Accessing element from last -- negative indexing print("\nLast
element of tuple")
print(Tuple1[-1])

print("\nThird last element of tuple") print(Tuple1[-3])

OUTPUT:
Initial empty Tuple:
()

Tuple with the use of String: ('Geeks',
'For')

Tuple using List: (1,
2, 4, 5, 6)

Tuple with the use of function:
('G', 'e', 'e', 'k', 's')

Tuple with nested tuples:
((0, 1, 2, 3), ('python', 'geek'))
Frist element of tuple 0

Last element of tuple 3

Third last element of tuple
1

Data type with one of the two built-in values, True or False. Boolean objects that are equal to True are
truthy (true), and those equal to False are falsy (false). But non-Boolean objects can be evaluated in
Boolean context as well and determined to be true or false. It is denoted by the class bool.

Python program to demonstrate boolean type
print(type(True)) print(type(False))
print(type(true)) # Error, Small t for true is
wrong

Boolean

19

Set

In Python, Set is an unordered collection of data type that is iterable, mutable and has no duplicate
elements. The order of elements in a set is undefined though it may consist of various elements. The
major advantage of using a set, as opposed to a list, is that it has a highly optimized method for checking
whether a specific element is contained in the set.
Creating a set

Sets can be created by using the built-in set() function with an iterable object or a sequence by placing
the sequence inside curly braces, separated by ‘comma’. A set contains only unique elements but at the
time of set creation, multiple duplicate values can also be passed. The order of elements in a set is
undefined and is unchangeable. Type of elements in a set need not be the same, various mixed-up data
type values can also be passed to the set.
Set items cannot be accessed by referring to an index, since sets are unordered the items has no index.

Python program to demonstrate Creation of Set in Python

Creating a Set set1
= set()
print("Intial blank Set: ") print(set1)

Creating a Set with the use of a String
set1 = set("GeeksForGeeks")
print("\nSet with the use of String: ")
print(set1)

Creating a Set with the use of a List set1
= set(["Geeks", "For", "Geeks"])
print("\nSet with the use of List: ")
print(set1)

Creating a Set with a mixed type of values (Having numbers and
strings) set1 = set([1, 2, 'Geeks', 4, 'For', 6, 'Geeks']) print("\nSet with the
use of Mixed Values") print(set1)

Methods used

set1.add(9)
print("\nSet after Addition of Three elements: ") print(set1)

Addition of elements to the Set using Update function set1.update([10,
11])
print("\nSet after Addition of elements using Update: ") print(set1)
Removing elements from Set using Remove() method set1.remove(9)
print("\nSet after Removal of two elements: ") print(set1)

Removing elements from Set using Discard() method

set1.discard(4) print("\nSet after Discarding two

elements: ") print(set1)

20

Removing element from the Set using the pop() method set1.pop()
print("\nSet after popping an element: ") print(set1)

Removing all the elements from Set using clear() method set1.clear()
print("\nSet after clearing all the elements: ") print(set1)

Output:
Intial blank Set: set()

Set with the use of String:
{'s', 'k', 'e', 'F', 'o', 'G', 'r'}

Set with the use of List:
{'Geeks', 'For'}

Set with the use of Mixed Values {1,
2, 4, 'Geeks', 6, 'For'}

Set after Addition of Three elements: {1,
2, 4, 'Geeks', 6, 'For', 9}

Set after Addition of elements using Update: {1,
2, 4, 'Geeks', 6, 'For', 9, 10, 11}

Set after Removal of two elements: {1,
2, 4, 'Geeks', 6, 'For', 10, 11}

Set after Discarding two elements: {1,
2, 'Geeks', 6, 'For', 10, 11}

Set after popping an element: {2,
'Geeks', 6, 'For', 10, 11}

Set after clearing all the elements: set()

Removing elements from a set

Elements can be removed from the Set by using built-in remove() function but a KeyError arises if
element doesn’t exist in the set. To remove elements from a set without KeyError, use discard(). Pop()
function can also be used to remove and return an element from the set, but it removes only the last
element of the set. To remove all the elements from the set, clear() function is used.
Dictionary

Dictionary in Python is an unordered collection of data values, used to store data values like a map,
which unlike other Data Types that hold only single value as an element, Dictionary holds key:value
pair. Key-value is provided in the dictionary to make it more optimized. Each keyvalue pair in a
Dictionary is separated by a colon :, whereas each key is separated by a ‘comma’.

Creating a dictionary

21

In Python, a Dictionary can be created by placing a sequence of elements within curly {} braces,
separated by ‘comma’. Dictionary holds a pair of values, one being the Key and the other corresponding
pair element being its Key:value. Values in a dictionary can be of any datatype and can be duplicated,
whereas keys can’t be repeated and must be immutable.
Dictionary can also be created by the built-in function dict(). An empty dictionary can be created by
just placing to curly braces{}.
Note – Dictionary keys are case sensitive, same name but different cases of Key will be treated
distinctly.

Python Program
Creating an empty Dictionary Dict
= {}
print("Empty Dictionary: ") print(Dict)

Creating a Dictionary with Integer Keys Dict
= {1: 'Geeks', 2: 'For', 3: 'Geeks'}
print("\nDictionary with the use of Integer Keys: ") print(Dict)

Creating a Dictionary with Mixed keys Dict =
{'Name': 'Geeks', 1: [1, 2, 3, 4]}
print("\nDictionary with the use of Mixed Keys:
") print(Dict)

Creating a Dictionary with dict() method
Dict = dict({1: 'Geeks', 2: 'For', 3:'Geeks'})
print("\nDictionary with the use of dict(): ")
print(Dict)

Creating a Dictionary with each item as a Pair
Dict = dict([(1, 'Geeks'), (2, 'For')]) print("\nDictionary
with each item as a pair: ") print(Dict)

Adding elements one at a time
Dict[0] = 'Geeks'
Dict[2] = 'For' Dict[3]
= 1
print("\nDictionary after adding 3 elements: ") print(Dict)
Updating existing Key's Value
Dict[2] = 'Welcome' print("\nUpdated
key value: ") print(Dict)

Methods used

Python program to demonstrate for accessing elements from a Dictionary

Creating a Dictionary
Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}

22

accessing a element using key
print("Accessing a element using key:")
print(Dict['name'])

accessing a element using get() method
print("Accessing a element using get:")
print(Dict.get(3))

Initial Dictionary
Dict = { 5 : 'Welcome', 6 : 'To', 7 : 'Geeks',

 'A' : {1 : 'Geeks', 2 : 'For', 3 : 'Geeks'},
 'B' : {1 : 'Geeks', 2 : 'Life'}}

print("Initial Dictionary: ")
print(Dict)

Deleting a Key value
del Dict[6]
print("\nDeleting a specific key: ") print(Dict)

Deleting a Key using pop() Dict.pop(5)
print("\nPopping specific element: ") print(Dict)

Deleting an arbitrary Key-value pair using popitem()
Dict.popitem()
print("\nPops an arbitrary key-value pair: ") print(Dict)

Deleting entire Dictionary
Dict.clear()
print("\nDeleting Entire Dictionary: ") print(Dict)
Output:
Empty Dictionary: {}

Dictionary with the use of Integer Keys: {1:
'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys: {'Name':
'Geeks', 1: [1, 2, 3, 4]}

Dictionary with the use of dict(): {1:
'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair: {1:
'Geeks', 2: 'For'}

Dictionary after adding 3 elements: {1:
'Geeks', 2: 'For', 0: 'Geeks', 3: 1}

Updated key value:

23

{1: 'Geeks', 2: 'Welcome', 0: 'Geeks', 3: 1} Accessing
a element using key:
For
Accessing a element using get: Geeks
Initial Dictionary:
{5: 'Welcome', 6: 'To', 7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2:
'Life'}}

Deleting a specific key:
{5: 'Welcome', 7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2: 'Life'}}

Popping specific element:
{7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}, 'B': {1: 'Geeks', 2: 'Life'}}

Pops an arbitrary key-value pair:
{7: 'Geeks', 'A': {1: 'Geeks', 2: 'For', 3: 'Geeks'}}

Deleting Entire Dictionary:
{}

24

UNIT I – Question Bank

 PART -A

1. Is Python a compiler or an interpreter?
2. Write the features of python.
3. List few Applications of Python.
4. Compare and Contrast: Syntax Error, Sematic Error.
5. Explain Run time Errors.
6. Find out the use of: type (10).
7. Find the output of:

a. type(“17”)
b. type(“BSC Students”)

8. Differentiate: Script mode and Interactive mode.
9. Give examples of Mutable and Immutable objects in Python.
10. Indentation gains much importance in Python. State True or False.
11. List out the various data types used in python.
12. Write few keywords employed in python.
13. Compare and contrast: Mutable versus Immutable.
14. What is a Boolean value?
15. Differentiate: Tuples and Lists in Python.
16. Create a dictionary with 4 Key-Value Pairs.
17. Mention few methods that are employed over Python Lists.
18. Comment on indexing and negative indexing used in List.
19. What are the built-in functions that are used in Tuple?
20. State the purpose of pop() method.

 PART -B

1. Explain the Structure of a Python Program with an example.
2. List the Elements of Python and give a detailed note on it.
3. Write a menu-driven program, using user-defined functions to find the area of rectangle,

square, circle and triangle by accepting suitable input parameters from user.
4. What is the difference between lists, tuples and dictionaries? Give an example for their usage.
5. What are the basic list operations that can be performed in Python?
6. Write a menu driven program to convert the given temperature from Fahrenheit to Celsius and

vice versa depending upon user’s choice.
7. Create a Simple Calculator using a python code.
8. How to create a dictionary? What are the methods employed over it.
9. Read the Student Name, ID, Department and marks of five subjects and find the percentage.
10. a. Write a python code to read an integer, float, complex values and display their data type.

b. Find the Simple Interest and Compound Interest using a python code.

25

Unite 2

Python interpreter

26

 I. PYTHON INTERPRETER

FEATURES OF PYTHON INTERPRETER

Python interpreter offers some pretty cool features:

• Interactive editing
• History substitution
• Code completion on systems with support for readline

INVOKING THE PYTHON INTERPRETER

On your machine, you can find your interpreter at an address like:
C:\Python36
Or it may reside on the location you selected at the time of installation. Add path using this command:

INTERACTIVE MODE

Python interpreter is in an interactive mode when it reads commands from a tty. The primary prompt is
the following:

 1. >>>
When it shows this prompt, it means it prompts the developer for the next command. This is the
REPL. Before it prints the first prompt, Python interpreter prints a welcome message that also

states its version number and a copyright notice. This is the secondary prompt:

 1. …
This prompt denotes continuation lines.

$ python3.7
Python 3.7 (default, Jul 16 2018, 04:38:07)
[GCC 4.8.2] on Windows
Type "help", "copyright", "credits" or "license" for more information. >>>
You will find continuation lines when working with a multi-line construct:

>>> it_rains =True >>>
if it_rains:

>>> print("The produce will be good")
Output:

The produce will be good
We can also use the Python interpreter as a calculator:

set path=%path%;C: \ python36

27

Numbers

HOW DOES PYTHON INTERPRETER WORKS?

Four things happen in a REPL:
i. Lexing- The lexer breaks the line of code into tokens.
ii. Parsing- The parser uses these tokens to generate a structure, here, an Abstract Syntax Tree,

to depict the relationship between these tokens.
iii. Compiling- The compiler turns this AST into code object(s). iv. Interpreting- The

interpreter executes each code object.

USING PYTHON AS A CALCULATOR

Start with simple Python commands. Start the interpreter and wait for the primary prompt, >>>.

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value.
Expression syntax is straightforward: the operators +, -, * and / work just like in most other languages
(for example, Pascal or C); parentheses (()) can be used for grouping. For example:

>>> 2 + 2
4
>>> 50 - 5*6
20
>>> (50 - 5*6) / 4
5.0
>>> 8 / 5 # division always returns a floating point number
1.6

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a fractional part (e.g. 5.0, 1.6) have type
float.

Division (/) always returns a float. To do floor division and get an integer result (discarding any
fractional result) you can use the // operator; to calculate the remainder you can use %:

>>> 17 / 3 # classic division returns a float
5.666666666666667
>>>
>>> 17 // 3 # floor division discards the fractional part

>>> 2*7
14
>>> 4 / 2
2.0

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/glossary.html#term-floor-division
https://docs.python.org/3/glossary.html#term-floor-division
https://docs.python.org/3/glossary.html#term-floor-division

28

Strings

5
>>> 17 % 3 # the % operator returns the remainder of the division 2
>>> 5 * 3 + 2 # result * divisor + remainder 17

With Python, it is possible to use the ** operator to calculate powers 1:

>>> 5 ** 2 # 5 squared
25
>>> 2 ** 7 # 2 to the power of 7 128

The equal sign (=) is used to assign a value to a variable. Afterwards, no result is displayed before the
next interactive prompt:

>>> width = 20
>>> height = 5 * 9
>>> width * height
900

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They
can be enclosed in single quotes ('...') or double quotes ("...") with the same result 2. \ can be used to
escape quotes:

>>>

>>> 'spam eggs' # single quotes
'spam eggs'
>>> s = 'First line.\nSecond line.' # \n means newline
>>> s # without print(), \n is included in the output
'First line.\nSecond line.'
>>> print(s) # with print(), \n produces a new line First line.
Second line.
>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + 'ium'
'unununium'
Lists

Python knows a number of compound data types, used to group together other values. The most
versatile is the list, which can be written as a list of comma-separated values (items) between square
brackets. Lists might contain items of different types, but usually the items all have the same type.

>>> squares = [1, 4, 9, 16, 25]

https://docs.python.org/3/tutorial/introduction.html#id3
https://docs.python.org/3/tutorial/introduction.html#id3
https://docs.python.org/3/tutorial/introduction.html#id4
https://docs.python.org/3/tutorial/introduction.html#id4

29

>>> squares
[1, 4, 9, 16, 25]

Like strings (and all other built-in sequence types), lists can be indexed and sliced:

>>> squares[0] # indexing returns the
item
1
>>> squares[-1]
25
>>> squares[-3:] # slicing returns a
new list [9, 16, 25]

All slice operations return a new list containing the requested elements.

>>> squares[:]
[1, 4, 9, 16, 25]

Lists also support operations like concatenation:

>>> squares + [36, 49, 64, 81, 100] [1,
4, 9, 16, 25, 36, 49, 64, 81, 100]

Unlike strings, which are immutable, lists are a mutable type, i.e. it is possible to change their content:

>>> cubes = [1, 8, 27, 65, 125] # something's wrong here >>> 4 ** 3 # the cube of 4 is 64,
not 65!
64
>>> cubes[3] = 64 # replace the wrong value
>>> cubes
[1, 8, 27, 64, 125]

#Program 1:

>>> i = 256*256
>>> print('The value of i is', i)
The value of i is 65536

https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/glossary.html#term-mutable
https://docs.python.org/3/glossary.html#term-mutable
https://docs.python.org/3/glossary.html#term-mutable

30

PYTHON - SHELL (INTERPRETER)

Python is an interpreter language. It means it executes the code line by line. Python provides a Python
Shell (also known as Python Interactive Shell) which is used to execute a single Python command
and get the result.

Python Shell waits for the input command from the user. As soon as the user enters the command, it
executes it and displays the result.

To open the Python Shell on Windows, open the command prompt, write python and press enter.

Python Shell

As you can see, a Python Prompt comprising of three Greater Than symbols (>>>) appears. Now, you
can enter a single statement and get the result. For example, enter a simple expression like 3 + 2, press
enter and it will display the result in the next line.

#Program 2:

 a, b = 0, >>> 1
>>> while a < 1000:
... print(a, end=',')
... a, b = b, a+b
...
0 ,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

31

Command Execution on Python Shell

Execute Python Script

Python Shell executes a single statement. To execute multiple statements, create a Python file with
extension .py, and write Python scripts (multiple statements).

For example, enter the following statement in a text editor such as Notepad.

Example: myPythonScript.py

print ("This is Python Script.")
print ("Welcome to Python Tutorial by TutorialsTeacher.com")

Save it as myPythonScript.py, navigate command prompt to the folder where you have saved this file
and execute the python myPythonScript.py command, as shown below.

Python Shell

Thus, you can execute Python expressions and commands using Python Shell.

PYTHON – IDLE

IDLE (Integrated Development and Learning Environment) is an integrated development environment
(IDE) for Python. The Python installer for Windows contains the IDLE module by default.

IDLE can be used to execute a single statement just like Python Shell and also to create, modify and
execute Python scripts. IDLE provides a fully-featured text editor to create Python scripts that includes

32

features like syntax highlighting, autocompletion and smart indent. It also has a debugger with stepping
and breakpoints features.

Goto File->New File and open a new Script page and enter multiple statements and then save the file
with extension .py using File -> Save. For example, save the following code as hello.py.

Python Script in IDLE

Now, press F5 to run the script in the editor window. The IDLE shell will show the output.

Python Script Execution Result in IDLE

Thus, it is easy to write, test and run Python scripts in IDLE.

PYTHON INDENTATION
Most of the programming languages like C, C++, Java use braces { } to define a block of code. Python
uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with the first unindented
line. The amount of indentation is up to you, but it must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs. Here is an example.

 for i in range(1,11):

 print(i)
if i == 5:

 break

The enforcement of indentation in Python makes the code look neat and clean. This results into
Python programs that look similar and consistent.

 Indentation can be ignored in line continuation. But it's a good idea to always indent. It makes the code
more readable. For example:

https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/for-loop

33

if True:
print('Hello')
a = 5

 and

if True: print('Hello'); a = 5

both are valid and do the same thing. But the former style is clearer. Incorrect
indentation will result into IndentationError.

ATOMS

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms
enclosed in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as
atoms. The syntax for atoms is:

atom: identifier | literal | enclosure enclosure:
parenth_form|list_display|dict_display|string_conversion

PYTHON IDENTIFIERS

An identifier is a name given to entities like class, functions, variables, etc. It helps to differentiate
one entity from another.

Rules for writing identifiers

1. Identifiers can be a combination of letters in lowercase (a to z) or uppercase) A to Z (or digits (0
to 9) or an underscore _. Names like myClass, var_1 and print_this_to_screen, all are valid
example.

2. An identifier cannot start with a digit. variable 1 is invalid, but variable1 is perfectly fine.
3. Keywords cannot be used as identifiers.

>>> global = 1
 File "<interactive input>" , line 1

global = 1
 ̂

SyntaxError : invalid syntax

4. We cannot use special symbols like , ! @, #, $, % etc. in the identifier.

34

Keywords are the reserved words in Python.

We cannot use a keyword as a variable name, function name or any other identifier. They are used to
define the syntax and structure of the Python language. In Python, keywords are case sensitive. There
are 33 keywords in Python 3.7. This number can vary slightly in the course of time.

All the keywords except True, False and None are in lowercase and they must be written as it is. The
list of all the keywords is given below.

LITERALS

Literal is a raw data given in a variable or constant. In Python, there are various types of literals they
are as follows:
Example 1:
 a = 0b1010 #Binary Literals

>>> a@ = 0
 File "<interactive input>" , line 1

 a@ = 0
 ̂

 SyntaxError : invalid syntax

5. Identifier can be of any length.

PYTHON KEYWORDS

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/function

35

b = 100 #Decimal Literal c =
0o310 #Octal Literal d = 0x12c
#Hexadecimal Literal

#Float Literal
float_1 = 10.5
float_2 = 1.5e2

#Complex Literal x
= 3.14j

STRINGS

In Python, Updation or deletion of characters from a String is not allowed. This will cause an error
because item assignment or item deletion from a String is not supported. This is because Strings are
immutable, hence elements of a String cannot be changed once it has been assigned.

Program:
String1 = "IIIBSC STUDENTS"
print("Initial String: ") print(String1)

Printing First character
print("\nFirst character of String is: ") print(String1[0])

Printing Last character
print("\nLast character of String is: ") print(String1[-1])

print("\n8th char: ") print(String1[8])
Updation or deletion of characters from a String is not allowed

Output:
Initial String:
IIIBSC STUDENTS

First character of String is: I

Last character of String is: S

8th char:
T

 II. OPERATORS IN PYTHON

Operators are special symbols in Python that carry out arithmetic or logical computation. The value
that the operator operates on is called the operand.

Operators are used to perform operations on variables and values.

• Arithmetic operators
• Relational operators

36

• Logical operators Bitwise operators
• Assignment operators
• Special operators

 Identity operators
 Membership operators

Program:
Examples of Arithmetic Operator a = 9 b = 4

Addition of numbers
add = a + b
Subtraction of numbers
sub = a - b
Multiplication of number mul = a * b
Division(float) of number
div1 = a / b
Division(floor) of number div2 = a // b

Modulo of both number
mod = a % b

print results
print(add)
print(sub)
print(mul)
print(div1)
print(div2)
print(mod)
Output:
13

37

5
36
2.25
2
1

Program:
Examples of Relational Operators
a = 13 b = 33

a > b is False
print(a > b)

a < b is True print(a
< b)

a == b is False

print(a == b)

a != b is True print(a
!= b)

a >= b is False
print(a >= b)

a <= b is True
print(a <= b)

Output:
False
True
False

38

True
False
True

Program:
Examples of Logical
Operator a = True b = False

Print a and b is False
print(a and b)

Print a or b is True print(a
or b)

Print not a is False
print(not a)

Output:
False
True
False

39

Program:

a = 60 # 60 = 0011 1100 b = 13
 # 13 = 0000 1101
c = 0

c = a & b; # 12 = 0000 1100
print "Line 1 - Value of c is ", c

c = a | b; # 61 = 0011 1101 print
"Line 2 - Value of c is ", c

c = a ^ b; # 49 = 0011 0001 print
"Line 3 - Value of c is ", c

c = ~a; # -61 = 1100 0011
print "Line 4 - Value of c is ", c

c = a << 2; # 240 = 1111 0000
print "Line 5 - Value of c is ", c

c = a >> 2; # 15 = 0000 1111
print "Line 6 - Value of c is ", c

Output:
Line 1 - Value of c is 12
Line 2 - Value of c is 61
Line 3 - Value of c is 49
Line 4 - Value of c is -61
Line 5 - Value of c is 240
Line 6 - Value of c is 15

40

Program:

41

Examples of Identity operators
a1 = 3 b1 = 3
a2 = 'GeeksforGeeks'
b2 = 'GeeksforGeeks'
a3 = [1,2,3]
b3 = [1,2,3]

print(a1 is not b1)

print(a2 is b2)

Output is False, since lists are mutable.
print(a3 is b3)

Examples of Membership operator
x = 'Geeks for Geeks' y
= {3:'a',4:'b'}

print('G' in x)
print('geeks' not in x)
print('Geeks' not in x)
print(3 in y) print('b'
in y) x = ["apple",
"banana"]

print("banana" in x)

Output:
False
True
False

Program:

42

returns True because a sequence with the value "banana" is in the list print("pineapple"
not in x)

returns True because a sequence with the value "pineapple" is not in the list

Output:
True
True
False
True
False
True
True

Ternary operator

Ternary operators also known as conditional expressions are operators that evaluate something based
on a condition being true or false. It was added to Python
 in version 2.5. It simply allows to test a condition in a single line replacing the multiline if-else
making the code compact.

Syntax :

Example 1: Simple Method to use ternary operator

Program to demonstrate conditional operator
a, b = 10, 20

Copy value of a in min if a < b else copy

b min = a if a < b else b print(min)

Output:
10

Example 2: Python 3 program to find the factorial of given number

 def factorial(n):
 # single line to find factorial return 1 if (n==1 or
n==0) else n * factorial(n - 1)

Driver Code num
= 5
print ("Factorial of",num,"is", factorial(num))

Output:
Factorial of 5 is 120

[on_true] if [expression] else [on_false]

https://mail.python.org/pipermail/python-dev/2005-September/056846.html
https://mail.python.org/pipermail/python-dev/2005-September/056846.html
https://mail.python.org/pipermail/python-dev/2005-September/056846.html

43

Increment and Decrement Operators in Python

Python is designed to be consistent and readable. One common error by a novice programmer in
languages with ++ and -- operators is mixing up the differences (both in precedence and in return value)
between pre and post increment/decrement operators. Simple increment and decrement operators aren’t
needed as much as in other languages.

for (int i = 0; i < 5; ++i)

In Python, instead we write it like,

A Sample Python program to show loop (unlike many # other languages, it doesn't use
++)

for i in range(0, 5): print(i)

Output:
0
1
2
3
4

We can almost always avoid use of ++ and --. For example, x++ can be written as x += 1 and
x- can be written as x -= 1.

44

UNIT II – Question Bank
PART -A

1. What operators does python support?
2. Mention the features of identity operators?
3. Give the characteristics of membership operator?
4. What is use of len() function.
5. Describe the function of is and is not operators.
6. List the relational operators used in python.
7. How Logical operators differs from Bitwise operators?
8. Explain about string slicing with examples.
9. How to split strings and what function is used to perform that operation?
10. Given A=60. Find A>>2.

PART -B

1. Give an example of how Python can be used as a calculator.
2. How Python Operates over Strings?
3. a. Explain string slicing with examples.

b. How to split strings. Explain with examples.
4. List out the various operators used in python and explain them.
5. Give a detailed note on:

a. Identity operators
b. Membership operators
c. Boolean operators

6. Given A=60, B=13. Using A and B, explain all the bitwise operators used in python.

45

46

Unite 3

Input and output

47

 I. INPUT AND OUTPUT STATEMENTS

Input Statement:
Input means the data entered by the user of the program. In python, we have input() and raw_input ()
function available for Input.

1) input() function

Syntax: input
(expression)

If prompt is present, it is displayed on monitor, after which the user can provide data from keyboard.
Input takes whatever is typed from the keyboard and evaluates it. As the input provided is evaluated, it
expects valid python expression. If the input provided is not correct then either syntax error or exception
is raised by python.

Example 1:

python input operations

user input
x = input("Enter any value: ")

printing value print("Entered value is: ", x)

Output
RUN 1:
Enter any value: 12345 Entered
value is: 12345

RUN 2:
Enter any value: IncludeHelp Entered
value is: IncludeHelp

RUN 3:
Enter any value: Python is a progamming language.
Entered value is: Python is a progamming language.

Example 2:

python input operations

just provide a value and entered value prints print(input())

provide another value x = input()
print("Your input is: ", x)

48

prompting message for input val1 =
input("Enter a value: ") val2 =
input("Enter another value: ") val3 =
input("Enter another value: ")

printing values print("val1
=", val1) print("val2 =",
val2) print("val3 =", val3)
Output

Hello
Hello
I'm Shivang!
Your input is: I'm Shivang!
Enter a value: 100
Enter another value: 23.45 Enter
another value: Helllooooooo val1
= 100 val2 = 23.45 val3 =
Helllooooooo

2) raw_input() func�on

This input method fairly works in older versions (like 2.x).

Syntax:

 raw_input (expression)

If prompt is present, it is displayed on the monitor after which user can provide the data from
keyboard. The function takes exactly what is typed from keyboard, convert it to string and then return
it to the variable on LHS of '='.

Example: In interactive mode

>>>x=raw_input ('Enter your name: ') Enter

your name: ABC

x is a variable which will get the string (ABC), typed by user during the execution of program. Typing
of data for the raw_input function is terminated by enter key.

We can use raw_input() to enter numeric data also. In that case we typecast, i.e., change the data type
using function, the string data accepted from user to appropriate Numeric type.

49

Example:

>>>y=int(raw_input("Enter your roll no."))

Enter your roll no. 5

It will convert the accepted string i.e., 5 to integer before assigning it to 'y'.

Output Statement:

1). print() function/statement

print evaluates the expression before printing it on the monitor. Print statement outputs an entire
(complete) line and then goes to next line for subsequent output (s). To print more than one item on a
single line, comma (,) may be used.

Syntax:

 print (expression/constant/variable)

Example 1:

print() example in Python

using single quotes
print('Hello!') print('How
are you?')

using double quotes
print("Hello!") print("How
are you?")

using triple single quotes
those can be used to print multiple line string
print('''Hello!''') print('''How are you?''')

printing multiline string print('''Hello...
how are you?
Hey! I am good, what about you? I
am good also, thanks.''')

Output

Hello!
How are you? Hello!
How are you? Hello!
How are you?
Hello... how are you?
Hey! I am good, what about you? I
am good also, thanks.

50

Example 2:

print() example in Python

printing values
print("Printing direct values...") print(10)
printing an integer print(10.2345) #
printing a float
print([10, 20, 30, 40, 50]) # printing a list print({10,
20, 30, 40, 50}) # printing a set

printing variables a =
10 b = 10.2345 c = [10,
20, 30, 40, 50] d = {10,
20, 30, 40, 50}

print("Printing variables...")
print(a) print(b) print(c)
print(d)

printing message with variables
print("Printing message variables...")
print("a = ", a) print("b = ", b)
print("c = ", c) print("d = ", d)

Output
Printing direct values...
10
10.2345
[10, 20, 30, 40, 50]
{40, 10, 50, 20, 30} Printing
variables...
10
10.2345
[10, 20, 30, 40, 50]
{40, 10, 50, 20, 30}
Printing message variables...
a = 10 b =
10.2345
c = [10, 20, 30, 40, 50] d
= {40, 10, 50, 20, 30}

 II. CONTROL STATEMENTS

(BRANCHING, LOOPING, CONDITIONAL STATEMENT, EXIT FUNCTION,
DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS)

51

The if statement

if statement is the most simple decision making statement. It is used to decide whether a certain
statement or block of statements will be executed or not i.e if a certain condition is true then a block
of statement is executed otherwise not.

Syntax:
if condition:
 # Statements to execute if # condition is true

Ex 1:

x = eval(input("Enter x: "))

if x>0:
 print("x is positive")

The if else statement with multiple statements

The if statement alone tells us that if a condition is true it will execute a block of statements and if the
condition is false it won’t. But what if we want to do something else if the condition is false. Here
comes the else statement. We can use the else statement with if statement to execute a block of code
when the condition is false.

Syntax:
if (condition):

 # Executes this block if

 # condition is true else:

 # Executes this block if

 # condition is false

Ex 1:
x = 'spam' if x ==
'spammy': print
'Hi spam\n'

 print "Nice weather we're having"
 print 'Have a nice day!'

else: print 'not
spam'
 print 'Not having a good day?'

A nested if example

(an if statement within another if statement)

52

nested-if
A nested if is an if statement that is the target of another if statement. Nested if statements means an if
statement inside another if statement. Yes, Python allows us to nest if statements within if statements.
i.e, we can place an if statement inside another if statement.

Syntax:
if (condition1):

 # Executes when condition1 is true

if (condition2):

 # Executes when condition2 is true

 # if Block is end here

if Block is end here
Ex 1: score=raw_input("Enter
score: ") score=int(score) if
score>=80: grade='A' else:

 if score>=70:
grade='B'

 else:
 grade='C' print

"Grade is:" +grade

A nested if example - using if/else Ex
1:
score = raw_input("Enter score: ")
score = int(score) if score >= 80:
grade = 'A' else:

 if score >= 70:
grade = 'B' else:

 if score >= 55:
grade = 'C' else:

 if score >= 50:
 grade = 'Pass'

 else:
 grade = 'Fail' print

"\n\nGrade is: " + grade

A nested if example - using if/elif/else

if-elif-else ladder
Here, a user can decide among multiple options. The if statements are executed from the top down.
As soon as one of the conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the ladder is bypassed. If none of the conditions is true, then the final else
statement will be executed.

Syntax:-

53

if (condition):

 statement

elif (condition):

 statement

.

.

else:

 statement
Ex 1:

score = raw_input("Enter score: ")
score = int(score) if score >= 80:
grade = 'A' elif score >= 70:
grade = 'B' elif score >= 55:
grade = 'C' elif score >= 50:
grade = 'Pass' else: grade =
'Fail' print "\n\nGrade is: " +
grade

Examples of while loops

While Loop Syntax
:

while expression:
 statement(s)

Example:
x = 1 while x <= 5:
print ('Hi spam') x =
x + 1 print ('I love
spam') print ('done')
print ('gone') Output:
Hi spam
I love spam
Hi spam
I love spam
Hi spam
I love spam
Hi spam
I love spam
Hi spam I
love spam
done gone

54

Examples : Using else Statement with Loops(while) Python
supports to have an else statement associated with a loop statement.

• If the else statement is used with a for loop, the else statement is executed when the loop has
exhausted iterating the list.

• If the else statement is used with a while loop, the else statement is executed when the condition
becomes false.

Ex:
count = 0 while
count < 5:

 print (count, " is less than 5")
 count = count + 1 else: print
(count, " is not less than 5")

Output:
0 is less than 5
1 is less than 5
2 is less than 5
3 is less than 5
4 is less than 5
5 is not less than 5

Examples of while loops - the infinite loop

x = 1 while x: print
'Hi spam' x = x + 1
print 'I love spam'

 print 'Press the Ctrl key and the C key together'
 print 'to interupt this program...'

print 'done' print 'gone'

Example: use of break to end an infinite loop
while 1:

 print 'Spam' answer = raw_input('Press y to
end this loop') if answer == 'y': print 'Fries
with that?'
 break

print 'Have a ' print
'nice day!'

Example: use of continue in a loop

while 1:
 print 'Spam'
 answer = raw_input('Press y for large fries ') if
answer == 'y':

 print 'Large fries with spam, mmmm, yummy ' continue

55

 answer = raw_input('Had enough yet? ')
if answer == 'y': break

print 'Have a ' print
'nice day!'

Example: the counter-controlled for loop

For Loop

Syntax:

for iterator_var in sequence:

 statements(s)

Example: for c in
range (10): print c

Note: range (10) is 0 through 9

Example: the counter-controlled for loop
for c in range (5,10): print

c

Note: range (5,10) is 5 through 9 Output:
5
6
7
8
9

Example: how to use a for loop in computing

n = [6,4,5,7,8,6,2,3,1]
s = 0 for val in n:
s=s+val print(s)
Output:
42

Example: For loop with strings

for letter in 'Python': # First Example
 print ('Current Letter :', letter)

fruits = ['banana', 'apple', 'mango']
for fruit in fruits: # Second Example print

('Current fruit :', fruit)

56

print ("Good bye!") Output:
Current Letter : P
Current Letter : y
Current Letter : t
Current Letter : h
Current Letter : o
Current Letter : n
Current fruit : banana
Current fruit : apple
Current fruit : mango
Good bye!

Example: 'break' with the for loop

for c in range (1,6):
 if c == 3:
break
print c

Output:
1
2

Example: how to use a loop within a loop a nested for loop

print ("This is the start of the program") for
i in range (1,3):

 for j in range (1,3):
 for k in range (1,3):

 print ("i: " + str(i) + " j: " + str(j) + " k: " + str(k))
print ("Hi")
Output:
This is the start of the program
i: 1 j: 1 k: 1 i:
1 j: 1 k: 2 i: 1
j: 2 k: 1 i: 1 j:
2 k: 2 i: 2 j: 1
k: 1 i: 2 j: 1
k: 2 i: 2 j: 2
k: 1 i: 2 j: 2
k: 2

EXIT() FUNCTION

exit()
exit() is defined in site.py and it works only if the site module is imported so it should be used in the
interpreter only. It is like a synonym of quit() to make the Python more user-friendly. It too gives a
message when printed:

57

Example:
Python program to demonstrate
exit() for i in

range(10):

 # If the value of i becomes
 # 5 then the program is forced
 # to exit if
i == 5:

 # prints the exit message
 print(exit)
exit()

 print(i)

Output:

0
1
2
3
4
Use exit() or Ctrl-D (i.e. EOF) to exit

DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS

Break statement

The break statement is used to terminate the loop or statement in which it is present. After that, the
control will pass to the statements that are present after the break statement, if available. If the
break statement is present in the nested loop, then it terminates only those loops which contains
break statement.
Syntax:

break
Continue statement

This statement is used to skip over the execution part of the loop on a certain condition. After that, it
transfers the control to the beginning of the loop. Basically, it skips its following statements and
continues with the next iteration of the loop.

58

As the name suggests pass statement simply does nothing. We use pass statement to write empty loops.
Pass is also used for empty control statements, functions and classes.

Syntax:
pass

Example:

Python program to demonstrate
difference between pass

and # continue statements s

= "geeks"

Pass statement for
i in s:

 if i == 'k':
 print('Pass executed')

 pass

print(i) print()

Continue statement for
i in s:

 if i == 'k':
 print('Continue
executed') continue
print(i)

OUTPUT:
g
e
e
Pass executed
k s

g
e
e
Continue executed

s

Break Statement : It brings control out of the loop

Syntax:
continue

Pass statement

59

Pass Statement:
We use pass statement to write empty loops. Pass is also used for empty control statement, function
and classes.

Continue statement: forces the loop to continue or execute the next iteration.

 III. FUNCTIONS

A function is a block of organized, reusable code that is used to perform a single, related action.
Functions provide better modularity for your application and a high degree of code reusing. Python
gives many built-in functions like print(), etc. but you can also create your own functions. These
functions are called user-defined functions.

Defining a Function
You can define functions to provide the required functionality. Here are simple rules to define a
function in Python.

• Function blocks begin with the keyword def followed by the function name and parentheses
(()).

• Any input parameters or arguments should be placed within these parentheses. You can also
define parameters inside these parentheses.

• The first statement of a function can be an optional statement - the documentation string of the
function or docstring.

• The code block within every function starts with a colon (:) and is indented.
• The statement return [expression] exits a function, optionally passing back an expression to the

caller. A return statement with no arguments is the same as return None.
Syntax:

 def functionname(parameters):

"function_docstring"
function_suite
return [expression]

By default, parameters have a positional behavior and you need to inform them in the same order that
they were defined.

Calling a Function:
Defining a function only gives it a name, specifies the parameters that are to be included in the function
and structures the blocks of code.
Once the basic structure of a function is finalized, you can execute it by calling it from another function
or directly from the Python prompt.

Ex 1: The following function takes a string as input parameter and prints it on standard screen.
Function definition is here def
fun1(str):
 "This prints a passed string into this function"
print (str) return;

60

Now you can call fun1
function fun1("III CSE") fun1("M
SEction-python class") Output:

 III CSE
 M SEction-python class

Ex 2: Arithmetical Operations using functions
def add(x,y): return (x+y) def
sub(x,y): return (x-y) def mul(x,y):
return (x*y) def div(x,y):

 return (x/y)

n1=40; n2=20 print("Sum=",add(n1,n2)) print("Sub=",sub(n1,n2))
print("Multiplication=",mul(n1,n2)) mylist = [10,20,30]
changeme(mylist) print("Values outside the function:
",mylist)print("Division=",div(n1,n2))

Output:
Sum= 60
Sub= 20
Multiplication= 800
Division= 2.0

Function Arguments

You can call a function by using the following types of formal arguments −
• Required arguments
• Keyword arguments
• Default arguments
• Variable-length arguments

Required Arguments
Required arguments are the arguments passed to a function in correct positional order. Here, the number
of arguments in the function call should match exactly with the function definition.
To call the function fun1(), you definitely need to pass one argument, otherwise it gives a syntax error
as follows:

Ex 1:
Function definition is here def
fun1(str):
 "This prints a passed string into this function"
print (str) return;

Now you can call fun1()
function fun1() fun1("M SEction-
python class")

Output:
TypeError Traceback (most recent call last) <ipython-input-72-671f9452cf1c> in <module>

 6

61

 7 # Now you can call printme function
----> 8 fun1()

 9 fun1("M SEction-python class")
10

TypeError: fun1() missing 1 required positional argument: 'str'

Keyword arguments
Keyword arguments are related to the function calls. When you use keyword arguments in a function
call, the caller identifies the arguments by the parameter name.
This allows you to skip arguments or place them out of order because the Python interpreter is able to
use the keywords provided to match the values with parameters. You can also make keyword calls to
the printme() function in the following ways:

Ex 1:
Function definition is here def
fun1(str):
 "This prints a passed string into this function"
print (str) return;

fun1(str="III CSE") fun1(str="M
SEction-python class")

Output:
III CSE
M SEction-python class

Ex 2: Note that the order of parameters does not matter.
Function definition is here def
printinfo(name, pyt):
 "This prints a passed info into this function"
 print ("Name: ", name) print
("Python Subject% ", pyt)

 return;

Now you can call printinfo function printinfo(
pyt=100, name="M Section")

Output:
Name: M Section
Python Subject% 100

Default arguments
A default argument is an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea on default arguments, it prints
default age if it is not passed – Ex 1:

Function definition is here def
printinfo(name, pyt = 95):
 "This prints a passed info into this function"

62

 print ("Name: ", name) print
("Python Subject% ", pyt)
return;

Now you can call printinfo function printinfo(
pyt=100, name="M Section")
#printinfo(pyt, name="M Section") Error stmt --as keyword argument should compulsorily
have a value--pyt=99
printinfo(name="M Section" , pyt=80)
printinfo(name="M Section")
Output:
Name: M Section
Python Subject% 100
Name: M Section
Python Subject% 80
Name: M Section
Python Subject% 95

Variable-length arguments
You may need to process a function for more arguments than you specified while defining the function.
These arguments are called variable-length arguments and are not named in the function definition,
unlike required and default arguments.
Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):
 "function_docstring"
function_suite return
[expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword variable
arguments. This tuple remains empty if no additional arguments are specified during the function call.
Following is a simple example –

Ex 1: # Function definition is here def
printinfo(arg1, *vartuple):
 "This prints a variable passed arguments"
 print ("Output is: ")
print (arg1) for var
in vartuple:
 print (var)
return;

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)
Output:
Output is:
10
Output is:
70

63

60
50

Anonymous Functions – Lambda Functions

These functions are called anonymous because they are not declared in the standard manner by using
the def keyword. You can use the lambda keyword to create small anonymous functions.

• Lambda forms can take any number of arguments but return just one value in the form of an
expression. They cannot contain commands or multiple expressions.

• An anonymous function cannot be a direct call to print because lambda requires an expression
• Lambda functions have their own local namespace and cannot access variables other than those

in their parameter list and those in the global namespace.
• Although it appears that lambda's are a one-line version of a function, they are not equivalent

to inline statements in C or C++, whose purpose is by passing function stack allocation during
invocation for performance reasons.

Syntax
The syntax of lambda functions contains only a single statement, which is as follows −
lambda [arg1 [,arg2,.....argn]]:expression
Following is the example to show how lambda form of function works –

Ex 1:
Function definition is here sum =
lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print ("Value of total : ", sum(10, 20))
print ("Value of total : ", sum(20, 20))
Output:
Value of total : 30
Value of total : 40

The return Statement
The statement return [expression] exits a function, optionally passing back an expression to the caller.
A return statement with no arguments is the same as return None.

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This depends on
where you have declared a variable.
The scope of a variable determines the portion of the program where you can access a particular
identifier. There are two basic scopes of variables in Python −

• Global variables
• Local variables

Global vs. Local variables
Variables that are defined inside a function body have a local scope, and those defined outside have a
global scope.

64

This means that local variables can be accessed only inside the function in which they are declared,
whereas global variables can be accessed throughout the program body by all functions. When you
call a function, the variables declared inside it are brought into scope. Following is a simple example
–

Ex 1:
total = 0; # This is global variable.
Function definition is here def
sum(arg1, arg2):
 # Add both the parameters and return them." total
= arg1 + arg2 # Here total is local variable.
 print ("Inside the function local total : ", total)

Now you can call sum function sum(10, 20)
print ("Outside the function global total : ", total)

Output:
Inside the function local total : 30
Outside the function global total : 0

Default arguments

A default argument is an argument that assumes a default value if a value is not provided in the
function call for that argument. The following example gives an idea on default arguments, it prints
default age if it is not passed – Ex 1:

Function definition is here def
printinfo(name, pyt = 95):
 "This prints a passed info into this function"
 print ("Name: ", name) print
("Python Subject% ", pyt)
return;

Now you can call printinfo function printinfo(
pyt=100, name="M Section")
#printinfo(pyt, name="M Section") Error stmt --as keyword argument should compulsorily
have a value--pyt=99
printinfo(name="M Section" , pyt=80)
printinfo(name="M Section")
Output:
Name: M Section
Python Subject% 100
Name: M Section
Python Subject% 80
Name: M Section
Python Subject% 95

65

IV.Python Errors and Exceptions Handling

Try Except

When an error occurs, or exception as we call it, Python will normally stop and generate an error
message.

The
The

try block lets you test a block of code for errors.
except block lets you handle the error.

 The finally block lets you execute code, regardless of the result of the try- and except blocks.
Example 1:

The try block will generate an exception, because z is not defined
Since the try block raises an error, the except block will be executed. #
Without the try block, the program will crash and raise an error

try:
 print(z) except:
 print("An exception occurred")

Output:
runfile('C:/Users/others/.spyder-py3/ex2.py', wdir='C:/Users/others/.spyder-py3')
An exception occurred

Suppose, if we only execute the following statement, then,

Example 2:
print(z)
Output:
NameError: name 'z' is not defined

Many Exceptions

You can define as many exception blocks as you want, e.g. if you want to execute a special block of
code for a special kind of error:

Example 3: # Print one message if the try block raises a NameError and another for other errors: try:
 print(z) except
NameError:
 print("Variable z is not defined") except:
 print("Something else went wrong") Output:
Variable z is not defined

Else

You can use the else keyword to define a block of code to be executed if no errors were raised:

Example 4: # Here, the try block does not generate any err: try:
 print("Hello") except:

66

 print("Something went
wrong") else: print("Nothing
went wrong")

Output:
Hello
Nothing went wrong

Example 5: # since a is not defined, it generates exception try:
 print(a) except:
 print("Something went
wrong") else: print("Nothing
went wrong")

Output:
 Something went wrong

Finally

The finally block, if specified, will be executed regardless if the try block raises an error or not. This
can be useful to close objects and clean up resources

Example 6:
try:
 print(z) except:
 print("Something went wrong") finally:
 print("The 'try except' is finished")

Output:
Something went wrong
The 'try except' is finished

Try to open and write to a file that is not writable:

Example 7: # The try block will raise an error when trying to write to a read-only file:

try:
 f = open("cse.txt")

f.write("M SECTION STUDENTS")
except:
 print("Something went wrong when writing to the file") finally:

f.close()

Output:
Something went wrong when writing to the file

Example 8: Divide by zero
def divide(x,y): try:
 res=x/y

67

 except ZeroDivisionError:
 print ("Exception occured")
else:
 print(res) finally:
print("Program is complete")

Output: >>>
divide(2,1)
2.0
Program is complete
>>> divide(2,0)
Exception occured
Program is complete

List of Standard Exceptions

Sr.No. Exception Name & Description

1 Exception
Base class for all exceptions

2 StopIteration
Raised when the next() method of an iterator does not point to any object.

3 SystemExit
Raised by the sys.exit() function.

4 StandardError
Base class for all built-in exceptions except StopIteration and SystemExit.

5 ArithmeticError
Base class for all errors that occur for numeric calculation.

6 OverflowError
Raised when a calculation exceeds maximum limit for a numeric type.

7 FloatingPointError
Raised when a floating point calculation fails.

8 ZeroDivisionError
Raised when division or modulo by zero takes place for all numeric types.

9 AssertionError
Raised in case of failure of the Assert statement.

68

10 AttributeError
Raised in case of failure of attribute reference or assignment.

11 EOFError
Raised when there is no input from either the raw_input() or input() function and
the end of file is reached.

12 ImportError
Raised when an import statement fails.

13 KeyboardInterrupt
Raised when the user interrupts program execution, usually by pressing Ctrl+c.

14 LookupError
Base class for all lookup errors.

15 IndexError

 Raised when an index is not found in a sequence.

16 KeyError
Raised when the specified key is not found in the dictionary.

17 NameError
Raised when an identifier is not found in the local or global namespace.

18 UnboundLocalError
Raised when trying to access a local variable in a function or method but no value has
been assigned to it.

19 EnvironmentError
Base class for all exceptions that occur outside the Python environment.

20 IOError
Raised when an input/ output operation fails, such as the print statement or the open()
function when trying to open a file that does not exist.

21 IOError
Raised for operating system-related errors.

22 SyntaxError
Raised when there is an error in Python syntax.

69

23 IndentationError
Raised when indentation is not specified properly.

24 SystemError
Raised when the interpreter finds an internal problem, but when this error is encountered
the Python interpreter does not exit.

25 SystemExit
Raised when Python interpreter is quit by using the sys.exit() function. If not handled in
the code, causes the interpreter to exit.

26 TypeError
Raised when an operation or function is attempted that is invalid for the specified data
type.

27 ValueError
Raised when the built-in function for a data type has the valid type of arguments, but the
arguments have invalid values specified.

28 RuntimeError
Raised when a generated error does not fall into any category.

29 NotImplementedError
Raised when an abstract method that needs to be implemented in an inherited class is
not actually implemented.

70

UNIT III – Question Bank

PART -A

1. What is a function?
2. Mention the types of function arguments in python.
3. What is meant by conditional if statement.
4. What is the difference between break and continue statement?
5. What is python pass statement?
6. What is an exception? Explain with an example.
7. List some few common Exception types and explain when they occur.
8. Give an example of lambda function.
9. State the use of Exit function.
10. Find the difference between break, continue and pass.
11. Give an example of Input and Output Statements.
12. Give the syntax of if else statement.
13. State the use of range function.
14. Explain for loop with an example.
15. Write the syntax of while loop with example.
16. Does Python support the concept of Default arguments?
17. Write a simple program which illustrates Handling Exceptions.

PART -B

1. Narrate the types of Function arguments with examples.
2. Narrate the importance of Default arguments with a python code.
3. Give a detailed note on the branching and looping control statements.
4. Using a python code, display the first n terms of Fibonacci series.
5. Using a python code, find the factorial of the given number.
6. Write a program to print the sum of the following series 1 + 1/2 + 1/3 +. …. + 1/n.
7. How Exceptions are handled using python. Give Examples.
8. Calculate the total marks, percentage and grade of a student. Marks obtained in each of the three

subjects are to be input by the user. Assign grades according to the following criteria : Grade
A: Percentage >=80,

 Grade B: Percentage >=70 and <80
 Grade C: Percentage >=60 and <70
 Grade D: Percentage >=50 and <60
 Fail: Percentage<50

71

Unite 1

Iteration and recursion

72

 I. ITERATION AND RECURSION
Iteration

An iteration is a single pass through a group/set of instructions. Most programs often contain loops of
instructions that are executed over and over again. The computer repeatedly executes the loop, iterating
through the loop.

Iteration is the act of repeating a process, either to generate an unbounded sequence of outcomes, or
with the aim of approaching a desired goal, target or result. Each repetition of the process is also called
an "iteration", and the results of one iteration are used as the starting point for the next iteration.

Example:

a = 0
for i from 1 to 3 // loop three times
{
a = a + i // add the current value of i to a
} print a // the number 6 is printed (0 + 1; 1 + 2; 3 + 3)

Recursive Functions

A recursive function is a function that calls itself. To prevent a function from repeating itself
indefinitely, it must contain at least one selection statement. This statement examines a condition called
a base case to determine whether to stop or to continue with another recursive step.

The process in which a function calls itself directly or indirectly is called recursion and the
corresponding function is called as recursive function. Using recursive algorithm, certain problems can
be solved quite easily.
Examples of such problems are Towers of Hanoi (TOH), In order/Preorder/Post order Tree Traversals,
DFS of Graph, etc.

1. Program for finding the factorial of a given
nodef fact(n): if n==0: return 1 else:

return n*fact(n-1) print("The factorial of a
given no is",fact(5)) Output:
The factorial of a given no is:120

2. Finding nth Fibonacci Number
def fib(n): if
n<3: return
1 else:
return fib(n-1)+fib(n-2)
print("The nth fibbonacci no is",fib(10))
Output:
The nth Fibonacci series is 55.

Disadvantages of Recursion over iteration

73

Note that both recursive and iterative programs have same problem solving powers, i.e., every recursive
program can be written iteratively and vice versa is also true. Recursive program has greater space
requirements than iterative program as all functions will remain in stack unt il base case is reached. It
also has greater time requirements because of function calls and return overhead.

Advantages of Recursion over iteration

Recursion provides a clean and simple way to write code. Some problems are inherently recursive like
tree traversals, Tower of Hanoi, etc. For such problems it is preferred to write recursive code. We can
write such codes also iteratively with the help of stack data structure. For example refer Inorder Tree
Traversal without Recursion, Iterative Tower of Hanoi.

CONDITIONAL EXECUTION

In order to write useful programs, we almost always need the ability to check conditions and change
the behavior of the program accordingly. Conditional statements give us this ability. The simplest
form is the if statement:

if x > 0: print "x is
positive"

The boolean expression after the if statement is called the condition. If it is true, then the indented
statement gets executed. If not, nothing happens.

Like other compound statements, the if statement is made up of a header and a block of statements:

HEADER:
 FIRST STATEMENT
 ...
 LAST STATEMENT

The header begins on a new line and ends with a colon (:). The indented statements that follow are
called a block. The first unindented statement marks the end of the block. A statement block inside a
compound statement is called the body of the statement.

There is no limit on the number of statements that can appear in the body of an if statement, but there
has to be at least one. Occasionally, it is useful to have a body with no statements. In that case, you can
use the pass statement, which does nothing.

ALTERNATIVE EXECUTION

A second form of the if statement is alternative execution, in which there are two possibilities and the
condition determines which one gets executed. The syntax looks like this:
if x%2 == 0:
 print x, "is even"
else: print x, "is
odd"

74

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays a
message to that effect. If the condition is false, the second set of statements is executed. Since the
condition must be true or false, exactly one of the alternatives will be executed. The alternatives are
called branches, because they are branches in the flow of execution.

As an aside, if you need to check the parity (evenness or oddness) of numbers often, you might "wrap"
this code in a function:

def printParity(x):
if x%2 == 0:

 print x, "is even"
 else: print x, "is

odd"

For any value of x, printParity displays an appropriate message. When you call it, you can provide any
integer expression as an argument.

>>> printParity(17)
17 is odd
>>> y = 17
>>> printParity(y+1)
18 is even

CHAINED CONDITIONALS

Sometimes there are more than two possibilities and we need more than two branches. One way to
express a computation like that is a chained conditional:

if x < y:
 print x, "is less than", y elif
x > y:
 print x, "is greater than", y
else: print x, "and", y, "are
equal"

elif is an abbreviation of "else if." Again, exactly one branch will be executed. There is no limit of the
number of elif statements, but the last branch has to be an else statement:

if choice == 'A': functionA()
elif choice == 'B': functionB()
elif choice == 'C':
 functionC()

else: print "Invalid
choice."

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of them is
true, the corresponding branch executes, and the statement ends. Even if more than one condition is
true, only the first true branch executes.

75

NESTED CONDITIONALS

One conditional can also be nested within another. We could have written the trichotomy example as
follows:

if x == y: print x, "and", y,
"are equal" else: if x < y:
print x, "is less than", y else:
print x, "is greater than", y

The outer conditional contains two branches. The first branch contains a simple output statement. The
second branch contains another if statement, which has two branches of its own. Those two branches
are both output statements, although they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals become
difficult to read very quickly. In general, it is a good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements. For example, we can
rewrite the following code using a single conditional:

if 0 < x: if x < 10: print "x is a
positive single digit."

The print statement is executed only if we make it past both the conditionals, so we can use the and
operator:

if 0 < x and x < 10: print "x is a
positive single digit."

These kinds of conditions are common, so Python provides an alternative syntax that is similar to
mathematical notation:

if 0 < x < 10: print "x is a
positive single digit."

This condition is semantically the same as the compound boolean expression and the nested
conditional.

THE return STATEMENT

The return statement allows you to terminate the execution of a function before you reach the end. One
reason to use it is if you detect an error condition:

import math

def printLogarithm(x): if x <= 0: print
"Positive numbers only, please." return

 result = math.log(x)
 print "The log of x is", result

76

The function printLogarithm has a parameter named x. The first thing it does is check whether x is less
than or equal to 0, in which case it displays an error message and then uses return to exit the function.
The flow of execution immediately returns to the caller, and the remaining lines of the function are not
executed.

 II. RECURSION

We mentioned that it is legal for one function to call another, and you have seen several examples of
that. We neglected to mention that it is also legal for a function to call itself. It may not be obvious why
that is a good thing, but it turns out to be one of the most magical and interesting things a program can
do. For example, look at the following function:

def countdown(n):
if n == 0: print
"Blastoff!"
 else:

 print n
 countdown(n-1)

countdown expects the parameter, n, to be a positive integer. If n is 0, it outputs the word, "Blastoff!"
Otherwise, it outputs n and then calls a function named countdown itself passing n-1 as an argument.

What happens if we call this function like this:

>>> countdown(3)

The execution of countdown begins with n=3, and since n is not 0, it outputs the value 3, and then calls
itself...

The execution of countdown begins with n=2, and since n is not 0, it outputs the value 2, and then calls
itself...
The execution of countdown begins with n=1, and since n is not 0, it outputs the value 1, and then calls
itself...
The execution of countdown begins with n=0, and since n is 0, it outputs the word, "Blastoff!" and then
returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

And then you're back in __main__ (what a trip). So, the total output looks like this:

3
2
1
Blastoff!

77

As a second example, look again at the functions newLine and threeLines:

def newline():
print

def threeLines():
 newLine() newLine()
newLine()

Although these work, they would not be much help if we wanted to output 2 newlines, or 106. A better
alternative would be this:

def nLines(n):
 if n > 0:

 print
 nLines(n-1)

This program is similar to countdown; as long as n is greater than 0, it outputs one newline and then
calls itself to output n-1 additional newlines. Thus, the total number of newlines is 1 + (n - 1) which, if
you do your algebra right, comes out to n.

The process of a function calling itself is recursion, and such functions are said to be recursive.

STACK DIAGRAM

Stack Diagram
A graphical representation of a stack of functions, their variables, and the values to which they
refer.

To keep track of which variables can be used where, it is sometimes useful to draw a stack diagram.
Like state diagrams, stack diagrams show the value of each variable, but they also show the function
to which each variable belongs.
Each function is represented by a frame. A frame is a box with the name of a function beside it and the
parameters and variables of the function inside it. The stack diagram for the previous example looks
like this:

78

The order of the stack shows the flow of execution. printTwice was called by catTwice, and catTwice
was called by __main__, which is a special name for the topmost function. When you create a
variable outside of any function, it belongs to __main__.

Each parameter refers to the same value as its corresponding argument. So, part1 has the same value as
chant1, part2 has the same value as chant2, and bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, and the name of the
function that called it, and the name of the function that called that, all the way back to __main__.

For example, if we try to access cat from within printTwice, we get a NameError:

Traceback (innermost last):
 File "test.py", line 13, in __main__ catTwice(chant1,
chant2)

 File "test.py", line 5, in catTwice printTwice(cat)
 File "test.py", line 9, in printTwice print
cat

NameError: cat

This list of functions is called a traceback. It tells you what program file the error occurred in, and
what line, and what functions were executing at the time. It also shows the line of code that caused the
error.

Notice the similarity between the traceback and the stack diagram. It's not a coincidence.
STACK DIAGRAMS FOR RECURSIVE FUNCTIONS

We can use a stack diagram to represent the state of a program during a function call. The same kind
of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a new function frame, which contains the function's
local variables and parameters. For a recursive function, there might be more than one frame on the
stack at the same time.

This figure shows a stack diagram for countdown called with n = 3:

79

As usual, the top of the stack is the frame for __main__. It is empty because we did not create any
variables in __main__ or pass any arguments to it.

The four countdown frames have different values for the parameter n. The bottom of the stack, where
n=0, is called the base case. It does not make a recursive call, so there are no more frames.

INFINITE RECURSION

If a recursion never reaches a base case, it goes on making recursive calls forever, and the program
never terminates. This is known as infinite recursion, and it is generally not considered a good idea.
Here is a minimal program with an infinite recursion:

def recurse(): recurse()

In most programming environments, a program with infinite recursion does not really run forever.
Python reports an error message when the maximum recursion depth is reached:

 File "<stdin>", line 2, in recurse
 (98 repetitions omitted)
 File "<stdin>", line 2, in recurse

RuntimeError: Maximum recursion depth exceeded
This traceback is a little bigger than the one we saw in the previous chapter. When the error occurs,
there are 100 recurse frames on the stack!

ABBREVIATED ASSIGNMENT

Incrementing a variable is so common that Python provides an abbreviated syntax for it:

>>> count = 0
>>> count += 1
>>> count
1
>>> count += 1

80

>>> count
2

count += 1 is an abreviation for count = count + 1 . We pronounce the operator as “plus-equals”. The
increment value does not have to be 1:

>>> n = 2
>>> n += 5
>>> n
7

There are similar abbreviations for -=, *=, /=, //= and %=:

>>> n = 2
>>> n *= 5
>>> n
10
>>> n -= 4
>>> n
6
>>> n //= 2
>>> n
3
>>> n %= 2
>>> n
1

 III. THE while STATEMENT

Here is a fragment of code that demonstrates the use of the while statement:

def sum_to(n):
 """ Return the sum of 1+2+3 ... n """ ss = 0 v = 1 while v <= n:
ss = ss + v

 v = v + 1 return ss

 # For your test suite test(sum_to(4) == 10)
test(sum_to(1000) == 500500)

While v is less than or equal to n, continue executing the body of the loop. Within the body, each time,
increment v. When v passes n, return your accumulated sum.

More formally, here is precise flow of execution for a while statement:

81

• Evaluate the condition at line 5, yielding a value which is either False or True.
• If the value is False, exit the while statement and continue execution at the next statement (line

8 in this case).
• If the value is True, execute each of the statements in the body (lines 6 and 7) and then go back

to the while statement at line 5.

The body consists of all of the statements indented below the while keyword.

Notice that if the loop condition is False the first time we get loop, the statements in the body of the
loop are never executed.

The body of the loop should change the value of one or more variables so that eventually the condition
becomes false and the loop terminates. Otherwise the loop will repeat forever, which is called an
infinite loop. An endless source of amusement for computer scientists is the observation that the
directions on shampoo, “lather, rinse, repeat”, are an infinite loop.

In the case here, we can prove that the loop terminates because we know that the value of n is finite,
and
we can see that the value of v increments each time through the loop, so eventually it will have to
exceed n. In other cases, it is not so easy, even impossible in some cases, to tell if the loop will ever
terminate.
What you will notice here is that the while loop is more work for you — the programmer — than the

op one has to manage the loop variable yourself: give it an equivalent for loop. When using a whil
e

initial value, test for completion, and then make sure you change something in the body so that the loop
terminates. By comparison, here is an equivalent function that uses for instead:

def sum_to(n):
 """ Return the sum of 1+2+3 ... n """
ss = 0 for v in range(n+1):
 ss = ss + v
return ss

 IV. TABLES

One of the things loops are good for is generating tables. Before computers were readily available,
people had to calculate logarithms, sines and cosines, and other mathematical functions by hand. To
make that easier, mathematics books contained long tables listing the values of these functions.
Creating the tables was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This is great! We can use the
computers to generate the tables, so there will be no errors.” That turned out to be true (mostly) but
shortsighted. Soon thereafter, computers and calculators were so pervasive that the tables became
obsolete.

82

Well, almost. For some operations, computers use tables of values to get an approximate answer and
then perform computations to improve the approximation. In some cases, there have been errors in the
underlying tables, most famously in the table the Intel Pentium processor chip used to perform
floatingpoint division.

Although a log table is not as useful as it once was, it still makes a good example of iteration. The
following program outputs a sequence of values in the left column and 2 raised to the power of that
value in the right column:

for x in range(13): # Generate numbers 0 to 12 print(x,
"\t", 2**x)

The string "\t" represents a tab character. The backslash character in "\t" indicates the beginning of an
escape sequence. Escape sequences are used to represent invisible characters like tabs and newlines.
The sequence \n represents a newline.

An escape sequence can appear anywhere in a string; in this example, the tab escape sequence is the
only thing in the string. How do you think you represent a backslash in a string?

As characters and strings are displayed on the screen, an invisible marker called the cursor keeps
track of where the next character will go. After a print function, the cursor normally goes to the
beginning of the next line.

The tab character shifts the cursor to the right until it reaches one of the tab stops. Tabs are useful for
making columns of text line up, as in the output of the previous program:

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096

Because of the tab characters between the columns, the position of the second column does not depend
on the number of digits in the first column.

TWO-DIMENSIONAL TABLES

A two-dimensional table is a table where you read the value at the intersection of a row and a column.
A multiplication table is a good example. Let’s say you want to print a multiplication table for the
values from 1 to 6.

A good way to start is to write a loop that prints the multiples of 2, all on one line:

for i in range(1, 7):

83

 print(2 * i, end=" ")
print()

Here we’ve used the range function, but made it start its sequence at 1. As the loop executes, the value
of i changes from 1 to 6. When all the elements of the range have been assigned

to
i, the loop
terminates.

Each time through the loop, it displays the value of 2 * i, followed by three spaces.

Again, the extra end=" " argument in the print function suppresses the newline, and uses three spaces
instead. After the loop completes, the call to print at line 3 finishes the current line, and starts a new
line.

The output of the program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

Encapsulation and generalization

Encapsulation is the process of wrapping a piece of code in a function, allowing you to take advantage
of all the things functions are good for. You have already seen some examples of encapsulation,
including is_divisible in a previous chapter.

Generalization means taking something specific, such as printing the multiples of 2, and making it more
general, such as printing the multiples of any integer.

This function encapsulates the previous loop and generalizes it to print multiples of n:

def print_multiples(n):
for i in range(1, 7):

 print(n * i, end=" ")
 print()

To encapsulate, all we had to do was add the first line, which declares the name of the function and the
parameter list. To generalize, all we had to do was replace the value 2 with the parameter n.
If we call this function with the argument 2, we get the same output as before. With the argument 3, the
output is:

3 6 9 12 15 18

With the argument 4, the output is:

4 8 12 16 20 24

By now you can probably guess how to print a multiplication
 table — by calling print_multiples repeatedly with different arguments. In fact, we can use
another loop:

for i in range(1, 7):

84

 print_multiples(i)

Notice how similar this loop is to the one inside print_multiples. All we did was replace the print
function with a function call.

The output of this program is a multiplication table:

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

More encapsulation

To demonstrate encapsulation again, let’s take the code from the last section and wrap it up in a
function:

def print_mult_table(): for
i in range(1, 7):
print_multiples(i)

This process is a common development plan. We develop code by writing lines of code outside any
function, or typing them in to the interpreter. When we get the code working, we extract it and wrap it
up in a function.

This development plan is particularly useful if you don’t know how to divide the program into functions
when you start writing. This approach lets you design as you go along.
Python Program to print the following multiplication table.

Program:

85

Output:

86

UNIT IV – Question Bank

PART -A

1. Compare and Contrast: Iteration and Recursion.
2. Define Recursion.
3. State the purpose of a Stack Diagram.
4. Give an example of Conditional Execution.
5. Give an example of Alternative Execution.
6. Mention the disadvantages of Recursion over iteration.
7. Mention the advantages of Recursion over iteration.
8. Write an example of Nested Conditionals.
9. Print a 5*5 table.
10. Write a python program to print the multiplication table of 6.
11. Give few examples of Abbreviated Assignments.
12. Create a two dimensional table.

PART -B

1. Write a python program to create a Two Dimensional Table.
2. Find the factorial of a number using recursion.
3. Print the following multiplication table using a Python code.

4. Implement the concept of chained conditionals using a Python Program.
5. Illustrate Conditional Execution and Alternative Execution using a Python code.
6. Implement the concept of chained conditionals using a Python Program.
7. Illustrate the recursive function using a stack diagram.

87

Unite 5

String

88

 I. STRINGS

A COMPOUND DATA TYPE

So far we have seen built-in types like int, float, bool, str and we’ve seen lists and pairs. Strings, lists,
and pairs are qualitatively different from the others because they are made up of smaller pieces. In the
case of strings, they’re made up of smaller strings each containing one character.

Types that comprise smaller pieces are called compound data types. Depending on what we are doing,
we may want to treat a compound data type as a single thing, or we may want to access its parts. This
ambiguity is useful.

WORKING WITH STRINGS AS SINGLE THINGS

We previously saw that each turtle instance has its own attributes and a number of methods that can be
applied to the instance. For example, we could set sthe turtle’s color, and we wrote tess.turn(90).

Just like a turtle, a string is also an object. So each string instance has its own attributes and methods.

For example:

>>> ss = "Hello, World!"
>>> tt = ss.upper()
>>> tt
'HELLO, WORLD!'
upper is a method that can be invoked on any string object to create a new string, in which all the
characters are in uppercase. (The original string ss remains unchanged.)
WORKING WITH THE PARTS OF A STRING

The indexing operator (Python uses square brackets to enclose the index) selects a single character
substring from a string:

>>> fruit = "banana"
>>> m = fruit[1]
>>> print(m)

The expression fruit[1] selects character number 1 from fruit, and creates a new string containing just
this one character. The variable m refers to the result. When we display m,

a

The letter at subscript position zero of "banana" is b. So at position [1] we have the letter a.

If we want to access the zero-eth letter of a string, we just place 0, or any expression that evaluates to
0, in between the brackets:
>>> m = fruit[0]
>>> print(m) b

89

The expression in brackets is called an index. An index specifies a member of an ordered collection, in
this case the collection of characters in the string. The index indicates which one you want, hence the
name. It can be any integer expression.

We can use enumerate to visualize the indices:

>>> fruit = "banana"
>>> list(enumerate(fruit))
[(0, 'b'), (1, 'a'), (2, 'n'), (3, 'a'), (4, 'n'), (5, 'a')]

Note that indexing returns a string — Python has no special type for a single character. It is just a string
of length 1.

The same indexing notation works to extract elements from a list:

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> prime_nums[4]
11
>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi",
"Paris"] >>> friends[3] 'Angelina'

LENGTH

The len function, when applied to a string, returns the number of characters in a string:

>>> fruit = "banana"
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

1
2

It causes the runtime error IndexError: string index out of range. The reason is that there is no character
at index position 6 in "banana". Because we start counting at zero, the six indexes are numbered 0 to
5. To get the last character, we have to subtract 1 from the length of fruit:

1
2

Alternatively, we can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

TRAVERSAL AND THE FOR LOOP

sz = len(fruit) last
= fruit[sz] # ERROR!

sz = len(fruit) last
= fruit[sz-1]

90

A lot of computations involve processing a string one character at a time. Often they start at the
beginning, select each character in turn, do something to it, and continue until the end. This pattern of
processing is called a traversal. One way to encode a traversal is with a while statement:

1
2
3
4
5

This loop traverses the string and displays each letter on a line by itself. The loop condition is ix <
len(fruit), so when ix is equal to the length of the string, the condition is false, and the body of the loop
is not executed. The last character accessed is the one with the index len(fruit)-1, which is the last
character in the string.

But we’ve previously seen how the for loop can easily iterate over the elements in a list and it can do
so for strings as well:

1
2

Each time through the loop, the next character in the string is assigned to the variable c. The loop
continues until no characters are left. Here we can see the expressive power the for loop gives us
compared to the while loop when traversing a string.

The following example shows how to use concatenation and a for loop to generate an abecedarian
series.
Abecedarian refers to a series or list in which the elements appear in alphabetical order. For example,
in Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings are Jack, Kack,
Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

1
2
3
4
5

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

ix = 0 while ix <
len(fruit): letter =
fruit[ix] print(letter)
ix += 1

for c in fruit:
 print(c)

prefixes = "JKLMNOPQ"
suffix = "ack"

for p in prefixes: print(p
+ suffix)

91

SLICES

A substring of a string is obtained by taking a slice. Similarly, we can slice a list to refer to some sublist
of the items in the list:

>>> s = "Pirates of the Caribbean"
>>> print(s[0:7])
Pirates
>>> print(s[11:14]) the
>>> print(s[15:24])
Caribbean
>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"] >>>
print(friends[2:4])
['Brad', 'Angelina']

The operator [n:m] returns the part of the string from the n’th character to the m’th character, including
the first but excluding the last. This behavior makes sense if you imagine the indices pointing between
the characters, as in the following diagram:

Three tricks are added to this: if you omit the first index (before the colon), the slice starts at the
beginning of the string (or list). If you omit the second index, the slice extends to the end of the string

(or list).
does.)
Thus:

>>> fruit = "banana"
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'
>>> fruit[3:999]
'ana'
What do you think s[:] means? What about friends[4:]?

STRING COMPARISON

The comparison operators work on strings. To see if two strings are equal:

Similarly, if you provide value for n that is bigger than the length of the string (or list), the slice will
take

all the values up to the end. (It won’t give an “out of range” error like the normal indexing operation

If you imagine this as a piece of paper, the slice operat or [n:m] copies out the part of the paper between
the n and m positions. Provided m and n are both within the bounds of the string, your result will be of
length (m - n).

92

1
2

Other comparison operations are useful for putting words in lexicographical order:

1
2
3
4
5
6

This is similar to the alphabetical order you would use with a dictionary, except that all the uppercase
letters come before all the lowercase letters. As a result:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all lowercase,
before performing the comparison. A more difficult problem is making the program realize that zebras
are not fruit.

STRINGS ARE IMMUTABLE

It is tempting to use the [] operator on the left side of an assignment, with the intention of changing a
character in a string. For example:

1
2
3

Instead of producing the output Jello, world!, this code produces the
 runtime error TypeError: 'str' object does not support item assignment.

Strings are immutable, which means you can’t change an existing string. The best you can do is create
a new string that is a variation on the original:

1
2
3

print(new_greeting)

The solution here is to concatenate a new first letter onto a slice of greeting. This operation has no
effect on the original string.

if word == "banana":
 print("Yes, we have no bananas!")

if word < "banana": print("Your word, " + word + ", comes
before banana.")

elif word > "banana": print("Your word, " + word + ",
comes after banana.")

else:
 print("Yes, we have no bananas!")

greeting = "Hello, world!"
greeting[0] = 'J' # ERROR!
print(greeting)

greeting = "Hello, world!"
new_greeting = "J" + greeting[1:]

93

THE in and not in OPERATORS

The in operator tests for membership. When both of the arguments to in are strings, in checks whether
the left argument is a substring of the right argument.

>>> "p" in "apple"
True
>>> "i" in "apple"
False
>>> "ap" in "apple"
True
>>> "pa" in "apple"
False

Note that a string is a substring of itself, and the empty string is a substring of any other string. (Also
note that computer scientists like to think about these edge cases quite carefully!)

>>> "a" in "a"
True
>>> "apple" in "apple"
True
>>> "" in "a"
True
>>> "" in "apple" True

The not in operator returns the logical opposite results of in:

>>> "x" not in "apple"
True

Combining the in operator with string concatenation using +, we can write a function that removes all
the vowels from a string:

 1
 2
 3
 4
 5
 6
 7
 8
 9

10

def remove_vowels(s):
vowels = "aeiouAEIOU"
s_sans_vowels = "" for x
in s: if x not in vowels:
s_sans_vowels += x
 return s_sans_vowels

test(remove_vowels("compsci") == "cmpsc")

test(remove_vowels("aAbEefIijOopUus") == "bfjps")

94

A FIND FUNCTION

What does the following function do?

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

In a sense, find is the opposite of the indexing operator. Instead of taking an index and extracting the
corresponding character, it takes a character and finds the index where that character appears. If the
character is not found, the function returns -1.

This is another example where we see a return statement inside a loop. If strng[ix] == ch, the function
returns immediately, breaking out of the loop prematurely.

If the character doesn’t appear in the string, then the program exits the loop normally and returns -1.

This pattern of computation is sometimes called a eureka traversal or short-circuit evaluation,
because as soon as we find what we are looking for, we can cry “Eureka!”, take the short-circuit, and
stop looking.

LOOPING AND COUNTING

The following program counts the number of times the letter a appears in a string.

def count_a(text):
count = 0 for c
in text:

 if c == "a":
 count += 1

 return(count)

test(count_a("banana") == 3)

def find(strng, ch):
 """

 Find and return the index of ch in strng.
Return -1 if ch does not occur in strng.

 """ ix = 0 while ix <
len(strng):

 if strng[ix] == ch: return
ix

 ix += 1
 return -1

test(find("Compsci", "p") == 3)
test(find("Compsci", "C") == 0)
test(find("Compsci", "i") == 6)
test(find("Compsci", "x") == -1)

95

OPTIONAL PARAMETERS

To find the locations of the second or third occurrence of a character in a string, we can modify the find
function, adding a third parameter for the starting position in the search string:

1
2
3
4
5
6
7
8
9

The call find2("banana", "a", 2) now returns 3, the index of the first occurrence of “a” in “banana”
starting the search at index 2. What does find2("banana", "n", 3) return? If you said, 4, there is a good
chance you understand how find2 works.

Better still, we can combine find and find2 using an optional parameter:

1
2
3
4
5
6
7

When a function has an optional parameter, the caller may provide a matching argument. If the third
argument is provided to find, it gets assigned to start. But if the caller leaves the argument out, then
start is given a default value indicated by the assignment start=0 in the function definition.

So the call find("banana", "a", 2) to this version of find behaves just like find2, while in the call
find("banana", "a"), start will be set to the default value of 0.
Adding another optional parameter to find makes it search from a starting position, up to but not
including the end position:

def find2(strng, ch, start):
 ix = start while ix <
len(strng): if
strng[ix] == ch:
return ix ix += 1
return -1

test(find2("banana", "a", 2) == 3)

def find(strng, ch, start=0):
 ix = start while ix <
len(strng): if
strng[ix] == ch:
return ix ix += 1
return -1

96

1
2
3
4
5
6
7

8
9

The optional value for end is interesting: we give it a default value None if the caller does not supply any
argument. In the body of the function we test what end is, and if the caller did not supply any argument,
we reassign end to be the length of the string. If the caller has supplied an argument for end , however,
the caller’s value will be used in the loop.

The semantics of start and end in this function are precisely the same as they are in the range function.

Here are some test cases that should pass:

1
2
3
4
5
6

THE BUILT-IN FIND METHOD

Now that we’ve done all this work to write a powerful find function, we can reveal that strings already
have their own built-in find method. It can do everything that our code can do, and more!

1
2
3
4
5

The built-in find method is more general than our version. It can find substrings, not just single

def find(strng, ch, start=0, end=None):
ix = start if end is None:
 end = len(strng)
while ix < end: if
strng[ix] == ch:
return ix

 ix += 1
return -1

ss = "Python strings have some interesting methods."
test(find(ss, "s") == 7) test(find(ss, "s", 7) == 7)
test(find(ss, "s", 8) == 13) test(find(ss, "s", 8, 13) == -
1) test(find(ss, ".") == len(ss)-1)

test(ss.find("s") == 7)
test(ss.find("s", 7) == 7)
test(ss.find("s", 8) == 13)
test(ss.find("s", 8, 13) == -1)
test(ss.find(".") == len(ss)-1)

97

characters:
>>> "banana".find("nan")
2
>>> "banana".find("na", 3) 4

THE SPLIT METHOD

One of the most useful methods on strings is the split method: it splits a single multi-word string into a
list of individual words, removing all the whitespace between them. (Whitespace means any tabs,
newlines, or spaces.) This allows us to read input as a single string, and split it into words.

>>> ss = "Well I never did said Alice"
>>> wds = ss.split()
>>> wds
['Well', 'I', 'never', 'did', 'said', 'Alice']

THE STRING FORMAT METHOD

The easiest and most powerful way to format a string in Python 3 is to use the format method. To see
how this works, let’s start with a few examples:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

s1 = "His name is {0}!".format("Arthur") print(s1)

name = "Alice" age
= 10
s2 = "I am {1} and I am {0} years old.".format(age, name) print(s2)

n1 = 4 n2
= 5
s3 = "2**10 = {0} and {1} * {2} = {3:f}".format(2**10, n1, n2, n1 * n2)
print(s3)

98

Running the script produces:

His name is Arthur!
I am Alice and I am 10 years old.
2**10 = 1024 and 4 * 5 = 20.000000

The template string contains place holders, ... {0} ... {1} ... {2} ... etc. The format method substitutes
its arguments into the place holders. The numbers in the place holders are indexes that determine which
argument gets substituted — make sure you understand line 6 above!

But there’s more! Each of the replacement fields can also contain a format specification — it is
always introduced by the : symbol (Line 11 above uses one.) This modifies how the substitutions are
made into the template, and can control things like:

 whether the field is aligned to the left <,
center

^, or right >

 the width allocated to the field within the result string (a number like 10)
 the type of conversion (we’ll initially only force conversion to float,

f
, as we did in line 11 of the

 code above, or perhaps we’ll ask integer numbers to be converted to hexadecimal using x)

 if the type conversion is a float, you can also specify how many decimal places are wanted
(typically, .2f is useful for working with currencies to two decimal places.)

 II. LISTS

A list is an ordered collection of values. The values that make up a list are called its elements, or its
items. We will use the term element or item to mean the same thing. Lists are similar to strings, which
are ordered collections of characters, except that the elements of a list can be of any type. Lists and
strings — and other collections that maintain the order of their items — are called sequences.

LIST VALUES

There are several ways to create a new list; the simplest is to enclose the elements in square brackets ([
and]):

1
2

The first example is a list of four integers. The second is a list of three strings. The elements of a list
don’t have to be the same type. The following list contains a string, a float, an integer, and another list:

1

A list within another list is said to be nested.

Finally, a list with no elements is called an empty list, and is denoted [].

ps = [10, 20, 30, 40]
qs = ["spam", "bungee", "swallow"]

zs = ["hello", 2.0, 5, [10, 20]]

99

We have already seen that we can assign list values to variables or pass lists as parameters to functions:

1
2
3
4
5

ACCESSING ELEMENTS

The syntax for accessing the elements of a list is the same as the syntax for accessing the characters of
a string — the index operator: [] (not to be confused with an empty list). The expression inside the
brackets specifies the index. Remember that the indices start at 0:

>>> numbers[0] 17

Any expression evaluating to an integer can be used as an index:
>>> numbers[9-8]
5
>>> numbers[1.0]
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: list indices must be integers, not float

If you try to access or assign to an element that does not exist, you get a runtime error:

>>> numbers[2]
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module> IndexError:
list index out of range

It is common to use a loop variable as a list index.

1
2
3
4

Each time through the loop, the variable i is used as an index into the list, printing the i‘th element.
This pattern of computation is called a list traversal.

The above sample doesn’t need or use the index i for anything besides getting the items from the list,
so this more direct version — where the for loop gets the items — might be preferred:

>>> vocabulary = ["apple", "cheese", "dog"]
>>> numbers = [17, 123]
>>> an_empty_list = []
>>> print(vocabulary, numbers, an_empty_list)
["apple", "cheese", "dog"] [17, 123] []

horsemen = ["war", "famine", "pestilence", "death"]

for i in [0, 1, 2, 3]: print(horsemen[i])

100

1
2
3
4

LIST LENGTH

The function len returns the length of a list, which is equal to the number of its elements. If you are
going to use an integer index to access the list, it is a good idea to use this value as the upper bound of
a loop instead of a constant. That way, if the size of the list changes, you won’t have to go through the
program changing all the loops; they will work correctly for any size list:

1
2
3
4

The last time the body of the loop is executed, i is len(horsemen) - 1, which is the index of the last
element.

Although a list can contain another list, the nested list still counts as a single element in its parent list.
The length of this list is 4:

>>> len(["car makers", 1, ["Ford", "Toyota", "BMW"], [1, 2, 3]]) 4

LIST MEMBERSHIP

in and not in are Boolean operators that test membership in a sequence. We used them previously with
strings, but they also work with lists and other sequences:

>>> horsemen = ["war", "famine", "pestilence", "death"]
>>> "pestilence" in horsemen
True
>>> "debauchery" in horsemen
False
>>> "debauchery" not in horsemen True

horsemen = ["war", "famine", "pestilence", "death"]

for h in horsemen:
 print(h)

horsemen = ["war", "famine", "pestilence", "death"]

for i in range(len(horsemen)): print(horsemen[i])

101

students = [
 ("John", ["CompSci", "Physics"]),
 ("Vusi", ["Maths", "CompSci", "Stats"]),
 ("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
 ("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
 ("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Count how many students are taking CompSci
counter = 0 for (name, subjects) in students:

 if "CompSci" in subjects:
 counter += 1 print("The number of students taking

CompSci is", counter)

LISTS AND FOR LOOPS

The for loop also works with lists, as we’ve already seen. The generalized syntax of a for loop is:

for VARIABLE in LIST:
BODY

So, as we’ve seen
1
2
3

Any list expression can be used in a for loop:

1
2
3
4
5
6

The first example prints all the multiples of 3 between 0 and 19. The second example expresses
enthusiasm for various fruits.

Since lists are mutable, we often want to traverse a list, changing each of its elements. The
following squares all the numbers in the list xs:

friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
for friend in friends: print(friend)

for number in range(20):
 if number % 3 == 0: print(number)

for fruit in ["banana", "apple", "quince"]:
 print("I like to eat " + fruit + "s!")

102

1
2
3
4

Take a moment to think about range(len(xs)) until you understand how it works.

In this example we are interested in both the value of an item, (we want to square that value),
and its index (so that we can assign the new value to that position). This pattern is common
enough that Python provides a nicer way to implement it:

1
2
3
4

enumerate generates pairs of both (index, value) during the list traversal. Try this next example to
see more clearly how enumerate works:

1
2

0 banana
1 apple
2 pear
3 lemon

LIST OPERATIONS

The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> c
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

xs = [1, 2, 3, 4, 5]

for i in range(len(xs)):
 xs[i] = xs[i]**2

xs = [1, 2, 3, 4, 5]

for (i, val) in enumerate(xs):
 xs[i] = val**2

for (i, v) in enumerate(["banana", "apple", "pear", "lemon"]):
 print(i, v)

103

The first example repeats [0] four times. The second example repeats the list [1, 2, 3] three times.

LIST SLICES

The slice operations we saw previously with strings let us work with sublists:

LISTS ARE MUTABLE

Unlike strings, lists are mutable, which means we can change their elements. Using the index operator
on the left side of an assignment, we can update one of the elements:

>>> fruit = ["banana", "apple", "quince"]
>>> fruit[0] = "pear"
>>> fruit[2] = "orange" >>> fruit
['pear', 'apple', 'orange']

The bracket operator applied to a list can appear anywhere in an expression. When it appears on the
left side of an assignment, it changes one of the elements in the list, so the first element of fruit has
been changed from "banana" to "pear", and the last from "quince" to "orange". An assignment to an
element of a list is called item assignment. Item assignment does not work for strings:

>>> my_string = "TEST"
>>> my_string[2] = "X"
Traceback (most recent call last):
 File "<interactive input>", line 1, in <module>
TypeError: 'str' object does not support item assignment

but it does for lists:

>>> my_list = ["T", "E", "S", "T"]
>>> my_list[2] = "X"
>>> my_list
['T', 'E', 'X', 'T']

With the slice operator we can update a whole sublist at once:

>>> a_list = ["a", "b", "c", "d", "e", "f"]

 >>> a_list = ["a" , "b" , "c" , "d" , "e" , "f"]
>>> a_list [1 : 3]
['b', 'c']
>>> a_list [: 4]

] 'a', 'b', 'c', 'd' [
 >>> a_list [3 :]

['d', 'e', 'f']
>>> a_list [:]
['a', 'b', 'c', 'd', 'e', 'f']

104

>>> a_list[1:3] = ["x", "y"]
>>> a_list
['a', 'x', 'y', 'd', 'e', 'f']

We can also remove elements from a list by assigning an empty list to them:

>>> a_list = ["a", "b", "c", "d", "e", "f"]
>>> a_list[1:3] = []
>>> a_list
['a', 'd', 'e', 'f']

And we can add elements to a list by squeezing them into an empty slice at the desired location:

LIST DELETION

Using slices to delete list elements can be error-prone. Python provides an alternative that is more
readable. The del statement removes an element from a list:

>>> a = ["one", "two", "three"]
>>> del a[1]
>>> a
['one', 'three']

As you might expect, del causes a runtime error if the index is out of range.

You can also use del with a slice to delete a sublist:

>>> a_list = ["a", "b", "c", "d", "e", "f"]
>>> del a_list[1:5]
>>> a_list
['a', 'f']

As usual, the sublist selected by slice contains all the elements up to, but not including, the second
index.

OBJECTS AND REFERENCES

After we execute these assignment statements

 >>> a_list = ["a" , "d" , "f"]
>>> a_list [1 : 1] = ["b" , "c"]
>>> a_list
['a', 'b', 'c', 'd', 'f']

 >>> a_list [4 : 4] = ["e"]
>>> a_list
['a', 'b', 'c', 'd', 'e', 'f']

105

1
2

we know that a and b will refer to a string object with the letters "banana". But we don’t know yet
whether they point to the same string object.

There are two possible ways the Python interpreter could arrange its memory:

In one case, a and b refer to two different objects that have the same value. In the second case, they
refer

to the same object.

We can test whether two names refer to the same object using the is operator:

>>> a is b
True

This tells us that both a and b refer to the same object, and that it is the second of the two state snapshots
that accurately describes the relationship.
Since strings are immutable, Python optimizes resources by making two names that refer to the same
string value refer to the same object.

This is not the case with lists:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a == b
True
>>> a is b

a = "banana"
b = "banana"

106

False

The state snapshot here looks like this:

 a

and b have the same value but do not refer to the same object.

ALIASING

Since variables refer to objects, if we assign one variable to another, both variables refer to the same
object:

>>> a = [1, 2, 3]
>>> b = a
>>> a is b True

In this case, the state snapshot looks like this:

Because the same list has two different names, a and b, we say that it is aliased. Changes made with

one
alias affect the other:
>>> b[0] = 5
>>> a
[5, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it is safer
to avoid aliasing when you are working with mutable objects (i.e. lists at this point in our textbook, but
we’ll meet more mutable objects as we cover classes and objects, dictionaries and sets). Of course, for
immutable objects (i.e. strings, tuples), there’s no problem — it is just not possible to change something
and get a surprise when you access an alias name. That’s why Python is free to alias strings (and any
other immutable kinds of data) when it sees an opportunity to economize.

CLONING LISTS

If we want to modify a list and also keep a copy of the original, we need to be able to make a copy of
the list itself, not just the reference. This process is sometimes called cloning, to avoid the ambiguity
of the word copy.

107

The easiest way to clone a list is to use the slice operator:

>>> a = [1, 2, 3]
>>> b = a[:]
>>> b
[1, 2, 3]

Taking any slice of a creates a new list. In this case the slice happens to consist of the whole list. So
now the relationship is like this:

Now we are free to make changes to b without worrying that we’ll inadvertently be changing a:

LIST METHODS

The dot operator can also be used to access built-in methods of list objects. We’ll start with the most
useful method for adding something onto the end of an existing list:

>>> mylist = []
>>> mylist.append(5)
>>> mylist.append(27)
>>> mylist.append(3)
>>> mylist.append(12)
>>> mylist [5, 27, 3, 12]

append is a list method which adds the argument passed to it to the end of the list.

>>> mylist.insert(1, 12) # Insert 12 at pos 1, shift other items up
>>> mylist
[5, 12, 27, 3, 12]

 >>> b [0] = 5
>>> a
[1 , 2, 3]

108

>>> mylist.count(12) # How many times is 12 in mylist?
2
>>> mylist.extend([5, 9, 5, 11]) # Put whole list onto end of mylist
>>> mylist
[5, 12, 27, 3, 12, 5, 9, 5, 11])
>>> mylist.index(9) # Find index of first 9 in mylist 6
>>> mylist.reverse()
>>> mylist
[11, 5, 9, 5, 12, 3, 27, 12, 5]
>>> mylist.sort()
>>> mylist
[3, 5, 5, 5, 9, 11, 12, 12, 27]
>>> mylist.remove(12) # Remove the first 12 in the list >>>
mylist
[3, 5, 5, 5, 9, 11, 12, 27]

 III. STRINGS AND LISTS

Two of the most useful methods on strings involve conversion to and from lists of substrings. The split
method (which we’ve already seen) breaks a string into a list of words. By default, any number of
whitespace characters is considered a word boundary:

>>> song = "The rain in Spain..."
>>> wds = song.split()
>>> wds
['The', 'rain', 'in', 'Spain...']

An optional argument called a delimiter can be used to specify which string to use as the boundary
marker between substrings. The following example uses the string ai as the delimiter:

>>> song.split("ai")
['The r', 'n in Sp', 'n...']

Notice that the delimiter doesn’t appear in the result.
The inverse of the split method is join . You choose a desired separator string, (often called the glue)
and join the list with the glue between each of the elements:
>>> glue = ";"
>>> s = glue.join(wds) >>>
s
'The;rain;in;Spain...'

The list that you glue together (wds in this example) is not modified. Also, as these next examples
show, you can use empty glue or multi-character strings as glue:

>>> " --- ".join(wds)

109

LIST AND RANGE

Python has a built-in type conversion function called list that tries to turn whatever you give it into a
list.

>>> xs = list("Crunchy Frog")
>>> xs
["C", "r", "u", "n", "c", "h", "y", " ", "F", "r", "o", "g"]
>>> "".join(xs)
'Crunchy Frog'

One particular feature of range is that it doesn’t instantly compute all its values: it “puts off” the
computation, and does it on demand, or “lazily”. We’ll say that it gives a promise to produce the values
when they are needed. This is very convenient if your computation short-circuits a search and returns
early, as in this case:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

In the second test, if range were to eagerly go about building a list with all those elements, you would
soon exhaust your computer’s available memory and crash the program. But it is cleverer than that!
This computation works just fine, because the range object is just a promise to produce the elements if
and
when they are needed. Once the condition in the
i

f becomes true, no further elements are generated,
and

the function returns.

def f(n):
 """ Find the first positive integer between 101 and less

than n that is divisible by 21
 """ for i in range(101,
n):

 if (i % 21 == 0): return
i

test(f(110) == 105) test(f(1000000000)
== 105)

'The --- rain --- in --- Spain...'
>>> "" . join (wds)
'TheraininSpain...'

>>> range (10) # Create a lazy promise
range(0, 10)

 >>> list (range (10)) # Call in the promise, to produce a list.
[0 , 1, 2, 3, 4, 5, 6, 7, 8, 9]

110

NESTED LISTS

A nested list is a list that appears as an element in another list. In this list, the element with index 3 is a
nested list:

>>> nested = ["hello", 2.0, 5, [10, 20]]

If we output the element at index 3, we get:

>>> print(nested[3]) [10,
20]

To extract an element from the nested list, we can proceed in two steps:

>>> elem = nested[3]
>>> elem[0] 10

Or we can combine them:

>>> nested[3][1]
20
Bracket operators evaluate from left to right, so this expression gets the 3’th element of nested and
extracts the 1’th element from it.

111

UNIT V – Question Bank

PART -A

1. Given Str=”BSC STUDENTS”, Find Str[-4].
2. Find the output of the following:

 s = "We are BSC Students of Sathyabama"
print(s[0:7])

3. State True or False: Strings are Immutable.
4. Identify the use of in and not in Operators.
5. How do you compare strings?
6. What is the output of the following:

 "Sathyabama".find("ab")
7. What is the use of split method in strings?
8. Define Lists.
9. Create a list with 5 integers, 2 floats, 3 strings.
10. State the functionality of len() function.
11. State how membership operators operates over lists?
12. What are List operations?
13. State True or False: Lists are Immutable.
14. Narrate how Slicing is carried out in Lists.
15. How to Clone the lists. Give an example.
16. Give examples of Nested Lists?

PART -B
1. How Python operates over Strings?

a. Explain Slicing in Strings.
b. How String Comparison is done?
c. How in and not in Operators are employed over strings?

2. Create lists with 10 values and explain the following using them:
a. Positive and negative Indexing
b. List Traversal
c. List Slicing
d. Membership Operations

3. Create lists with 10 values and explain the following using them:
a. Employ + and * and print the results.
b. List Slicing
c. List deletion
d. Aliasing

4. List out few List methods. Explain them with examples.
5. Narrate the purpose of find function and Split method employed over strings?
6. a. Demonstrate with examples, how Cloning of lists can be done?

b. Comment on: Lists and for loops.

112

Reference
• http://openbookproject.net/thinkcs/python/english3e/iteration.html
• https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap04.html
• https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap03.html#11
• http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
• https://www.slideshare.net/rj143/python-by-rj

http://openbookproject.net/thinkcs/python/english3e/iteration.html
http://openbookproject.net/thinkcs/python/english3e/iteration.html
https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap04.html
https://www.greenteapress.com/thinkpython/thinkCSpy/html/chap03.html#11
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
http://openbookproject.net/thinkcs/python/english3e/strings.html#cleaning-up-your-strings
https://www.slideshare.net/rj143/python-by-rj
https://www.slideshare.net/rj143/python-by-rj
https://www.slideshare.net/rj143/python-by-rj
https://www.slideshare.net/rj143/python-by-rj
https://www.slideshare.net/rj143/python-by-rj

	Computers Programming.pdf
	I. OVERVIEW OF PROGRAMMING
	II. STRUCTURE OF A PYTHON PROGRAM
	Python Operators

	III. ELEMENTS OF PYTHON
	Numeric
	Tuple
	Dictionary
	UNIT I – Question Bank
	I. PYTHON INTERPRETER
	USING PYTHON AS A CALCULATOR
	Lists

	PYTHON - SHELL (INTERPRETER)
	PYTHON – IDLE
	PYTHON INDENTATION
	ATOMS
	PYTHON IDENTIFIERS

	II. OPERATORS IN PYTHON

	UNIT II – Question Bank

	I. INPUT AND OUTPUT STATEMENTS
	2) raw_input() function

	II. CONTROL STATEMENTS
	Example: how to use a loop within a loop a nested for loop
	EXIT() FUNCTION
	DIFFERENCE BETWEEN BREAK, CONTINUE AND PASS

	III. FUNCTIONS
	Function Arguments
	Required Arguments
	Keyword arguments
	Default arguments
	Variable-length arguments
	Anonymous Functions – Lambda Functions
	Syntax
	The return Statement
	Scope of Variables
	Global vs. Local variables

	Default arguments
	IV. Python Errors and Exceptions Handling
	UNIT III – Question Bank

	I. ITERATION AND RECURSION
	CONDITIONAL EXECUTION
	ALTERNATIVE EXECUTION
	CHAINED CONDITIONALS
	NESTED CONDITIONALS
	THE return STATEMENT

	II. RECURSION
	STACK DIAGRAM
	STACK DIAGRAMS FOR RECURSIVE FUNCTIONS
	INFINITE RECURSION
	ABBREVIATED ASSIGNMENT

	III. THE while STATEMENT
	v = v + 1 return ss

	IV. TABLES
	TWO-DIMENSIONAL TABLES
	UNIT IV – Question Bank

	I. STRINGS
	II. LISTS
	III. STRINGS AND LISTS
	UNIT V – Question Bank

