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  Preface 

 

It has become customary to many colleges and universities to 

teach undergraduate courses in statistics and probability. These 

courses usually emphasize the expectation of several events and 

treat some predicted problems.    

In teaching such a course, the author has found two 

detrimental effects on students. Those students who are primarily 

interested in technical applications also get feeling that all 

probability distributions can be separated between discrete and 

continuous random variables.  

This book is an attempt to present the material usually 

covered in such courses in the framework where the general 

properties of probability and a part of statistic. The first three 

chapters cover the probability and fourth chapter cover the 

correlation and regression analysis.  

Chapter one present the opinions of voters concerning a 

new sales tax can also be considered as observations of an 

experiment. We are particularly interested in the observations 

obtained by repeating the experiment several times. In most cases, 

the outcomes will depend on chance and, therefore, cannot be 

predicted with certainty. If a chemist runs an analysis several 
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times under the same conditions, he or she will obtain different 

measurements, indicating an element of chance in the 

experimental procedure.   

Chapter two study of a random phenomenon is in the 

statements we can make concerning the events that can occur, and 

these statements are made based on probabilities assigned to 

simple outcomes. One of the immediate steps that can be taken in 

this unifying attempt is to require that each of the possible 

outcomes of a random experiment be represented by a real 

number. In this way, when the experiment is performed, each 

outcome is identified by its assigned real number rather than by 

its physical description.  

Chapter three study involving testing the effectiveness of a 

new drug, the number of cured patients among all the patients 

who use the drug approximately follows binomial, 

hypergeometric, and Poisson distributions. 

Chapter four use statistical terms we use correlation to 

denote association between two quantitative variables. We also 

assume that the association is linear, that one variable increases or 

decreases a fixed amount for a unit increase or decrease in the 

other. 
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Chapter 1 

 

Probability - Sample Space 

 

1. Introduction 

Statisticians use the word experiment to describe any 

process that generates a set of data. A simple example of a 

statistical experiment is the tossing of a coin. In this experiment, 

there are only two possible outcomes, heads or tails.  

Another experiment might be the launching of a missile 

and observing of its velocity at specified times. The opinions of 

voters concerning a new sales tax can also be considered as 

observations of an experiment. We are particularly interested in 

the observations obtained by repeating the experiment several 

times. In most cases, the outcomes will depend on chance and, 

therefore, cannot be predicted with certainty. If a chemist runs an 

analysis several times under the same conditions, he or she will 

obtain different measurements, indicating an element of chance in 

the experimental procedure. Even when a coin is tossed 

repeatedly, we cannot be certain that a given toss will result in a 

head. However, we know the entire set of possibilities for each 

toss.  
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2. Sample space 

 

Consider an experiment whose outcome is not predictable with 

certainly in advance. However, although the outcome of the 

experiment will not be known in advance, let us suppose that the 

set of all possible outcomes of an experiment is known. 

❖The set of all possible outcomes of a random experiment is 

called a sample space. 

❖ We are going to denote the sample space by S. 

Example 1: 

Tossing a coin once.                         

 
 

S = {H, T} 

Example 2: 

 
Rolling a die once. 

S = {1, 2, 3, 4, 5, 6}                                                 
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Example 3: 

Tossing two coins, then the sample space consists of the 

following four points 

S = {(H, H), (H, T), (T, H), (T, T)} 

The outcome will be (H,H) if both coins are heads , (H,T) if the 

first coin is heads and the second tails , (T,H) if the first is tails 

and the second heads , and (T,T) if both coins are tails . 

Example4: (Rolling two dice) 

S = {(1,1), (1,2), . . . . . , (1,6), 

        (2,1), (2,2), . . . . , (2,6), 

         ……………………. 

        (6,1), (6,2), …… , (6,6)} 

 

Or , we can write 

S = { (i , j ) : i , j = 1,2,3,4,5,6 } 

where the outcome (i , j ) is said to occur if i appears on the left 

most die and j on the other die. 

 

Example 5:  

If the experiment consists of measuring (in hours) the lifetime of 

a transistor, then the sample space consists of all nonnegative real 

numbers. 

That is                 

                              S = {x: 0 ≤ x < ∞} 
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Example 6:  

If the experiment consists selecting three items at random from a 

manufacturing process, such that each item is inspected and 

classified defective, D, or non defective, N. Then the sample 

space will be 

S = {(D,D,D), (D,D,N), (D,N,D), (N,D,D),(D,N,N), (N,D,N),  

                                                                         (N,N,D) , ( N,N,N)} 

 

3.Events 
  

An event, A, is a subset of a sample space. If A is an event, we 

say that A has occurred if it contains the outcomes that occurred 

 A S  . If an event A contains no outcomes, then A is an 

impossible event. 

 

Example 7: 

In example 3, if A = {(H, H), (H, T)}, then A is the event that a 

head appears on the first coin. 

 

Example 8: 

In example 4, if 

                A = {(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, 

then  

               A is the event that the sum of the dice equals 7. 
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Complementary Events 

The complement of an event A with respect to S is the subset of 

all elements of S that are not in A. We denote the complement of 

A by A
c
 

                                                                                                                  S 

 

 

 

 

 

                                       Figure 1: shaded region: A
c  

 

 

Definition 
 

The intersection of two events A and B, denoted by A∩ B, or AB 

is the event containing all elements that are common to A and B 

 

 

 

Shaded region: A∩ B
 

 

Example 9: 
In example 3, if 

                    A = {(H, H), (H, T), (T, H)} 

A
c 

 
A 
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is the event that at least 1 head occurs, and 

                               B = {(H, T), (T, H), (T, T)} 

is the event that at least 1 tail occurs, then 

                               A∩B = {(H, T), (T, H)} 

is the event that exactly 1 head and 1 tail appear.
 

 

Example 10: 

In example 4, if   A = {(1,6),(2,5),(3,4) , (4,3) , (5,2) , (6,1) } , 

is the event that the sum of the dice equals 7 and 

                  B = {(1,5),(2,4) , (3,3) , (4,2) , (5,1) } 

is the event that the sum is 6, then the event 

                         A∩B = Ø. 

That is A and B have no elements in common and therefore, 

cannot occur simultaneously. 

 

Definition 
 

Two events A and B are mutually exclusive, or disjoint if 

          A∩B = Ø,  that is, if A and B have no elements in common. 

It is clear that A and A
c 
are mutually exclusive. 

 

Definition 

 

The union of the two events A and B, denoted by A U B, is the 

event containing all the elements that belong to A or B or both. 
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shaded region A U B 

 

Definition 

The difference of the two events A and B, denoted by A −B, is 

the event containing all the elements that belong to A and not 

belong to B, that is A only (A ∩ B
c
) 

 

 

 

 

 

 

 

 

Example 11:  

An electronic device is tested and its total time of service say t, is 

recorded. We shall assume the sample space to be S = {t| t ≥ 0}.  

Let A = {t | t < 100}, B = {t | 50 ≤t ≤ 200}, C = {t | t >150}. Then  

 

B A ∩ B
c

 

S 
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1- A U B = {t | t ≤ 200} 

2- A ∩ B = {t| 50 ≤ t <100}  

3- B U C = {t | t ≥ 50} 

4- B ∩ C = {t| 150 < t ≤ 200} 

5- A ∩ C = Ø  

6- A U C = {t| t < 100 or t > 150} 

7- A
c
= {t| t ≥ 100} 

8- C
c
= {t| t ≤ 150}  

 

Algebra’s laws of the sets 

1-     ,

,

,

,

S S

S

 

 

A A= A A A A

A A= A A A A

 

2- Associative laws  

               A B C= A B C , A B C= A B C  

3- Commutative laws  

        A B= B A, A B= B A  

4-Distributive laws 

                   A B C = A B A C ,      A B C = A B A C  

5-Complement laws  

       ,
c

c c c c c  A A =S, A A = A A    S = , =S  

6-De Morgen’s law 

         
c cc c c cA B = A B , A B = A B  
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Remarks:- 

1- If C  A B, B C A  

2- If B  A B, B A A  

3- If then B B A B, A  

4-    A B B A B , A  

5-    A BB A  

6-    A B A  B  

7- , , ,cS A A A A A A A        

8-  If B   A B, A  

 

4. Axioms of probability 

 

The probability of an event A is a number, P(A), such that  

(1) 0 ≤ P (A) ≤ 1         

(2) P(S) = 1  

(3) if A1 , A2 , … are mutually exclusive events  

(i.e., Ai ∩ Aj = Ø , i ≠ j  ) then 

                           11

( )i i

ii

P A P A
 



 
 

 

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Classical Probability 

The (classical) probability, P(A), of an event A is given by 

( )    
    ( )

( )
n Anumber of elements in A

number of elements in S n S
P A  

 

It is assumed here that the sample space is finite and all outcomes 

are equally likely to occur. 

 

Example 12:  

A coin is tossed twice. What is the probability that at least one 

head occurs?  

Solution: The sample space for this experiment is  

            S = {(H, H), (H, T), (T, H), (T, T)} , n(S)=4 

If the coin is balanced, each of these outcomes would be equally 

to occur.  

If A represents the event of at least one head occurring, then  

A = {(H, H), (H, T), (T, H)}, n(A)=3, and 

 

( ) 3
( ) 4

( )
n A

n S
P A  

 

 

Further Rules on probability 

 

1) Addition Rule 

Let A and B are two not mutually exclusive events then: 

              ( ) ( ) ( ) ( )P A B P A P B P A B    
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2) Multiplication Rule 

Let A and B are two independent events then: 

              ( ) ( )* ( )P A B P A P B  

3) Complement Rule 

Let A an event subset from sample space then: 

                        ( ) ( ) ( ) 1 ( )cP A P S P A P A     

Properties: 

1) ( ) ( ) ( ) 1c cP E E P E P E   .  

2) 
1 2 3 1 2

( ..... ) ( )* ( )*.....* ( )
n n

P E E E E P E P E P E  

3) 
1 2 1 2 1 2

( ) ( ) 1 ( )c c cP E E P E E P E E    

4) 
1 2 1 2 1 2

( ) ( ) 1 ( )c c cP E E P E E P E E   . 

 

Example 13: 

If A and B are two not mutually exclusive events, suppose

P(A) =0.5 P(B)=0.3 and P (A B)=0.2 . Find the following 

probabilities:                                             

1) P (A ) B                   2) ( )c cP A B                           3) cP (A B )       

 

Solution: 

1- P (A ) =P (A)+P( )- P (A )=0.5+0.3-0.2=0.6B B B  

2- ( ) ( ) 1 0.6 0.4c c cP A B P A B      

3- c c cP (A B ) P (A)+P(B ) P (A B ) 0.5 0.7 (0.5 0.2) 0.9        
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Example 14: 

If A and B are two mutually exclusive events, suppose P(A) = 0.4 , 

and P(B)= 0.2  . Find the following probabilities 

1- Probability of A or B              2- ( )c cP A B              3) cP (A B )       

Solution: 

1- P (A or ) =P (A )=P (A)+P( )=0.4+0.2=0.6B B B  

2- ( ) ( ) 1 ( ) 1c c cP A B P A B P       

3- c c cP (A B ) P (A)+P(B ) P (A B ) 0.4 0.8 (0.4) 0.8       

Example 15: 

A student is taking two courses, Math & Phys, the probability the 

student will pass the math is 0.6, and the probability of passing 

Phys is 0.7 , the probability of passing both courses is 0.5, what is 

the probability of passing at least one course. 

 

Solution:  

Let the probability of student pass in Math P (A) =0.6 and in Phys

P (B)=0.7, also pass in both them P (A B) 0.5  

P (Math or Phys) P (A B) P (A)+P (B) P (A B) 0.6 0.7 0.5 0.8      
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5.Counting sample points: 

1.Multiplication Rule 

If an operation can be performed in n1 ways, and if for each of 

these a second operation can be performed in n2 ways,  

then the two operations can be performed together in  

                                 n1 n2 ways.   

  The rule is sometimes called the Basic Principle of 

Counting. 

 

Example 16: 

How many different 7-place license plates are possible if the first 

3 places are to be occupied by letters and the final 4 by numbers?  

Solution: 

 By the Multiplication Rule , we have  

26 . 26 . 26 . 10. 10 .10 .10 = 175760000 possible license plates.  

Example 17: 

In the previous example how many license plates would be 

possible if no letter or digit can be repeated? 

Solution :  

In this case there would be  26 . 25 . 24 . 10. 9 .8 .7 = 78624000 

possible license plates. 
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2.Permutation:  

The number of arrangements of size r from a set of n distinct 

objects is given by 

                       

!
;         0

( )!

n

r

n
P r n

n r
  


 

 Note:  if r = n,  

                   

! !
0! 1

!
!

( )!

n n n
n

n
P n

n n
   

  

If r = 0, 

                   
0

!
1

!

n n
P

n
 

 

Example 17: 

 In a class of ten students, six are to be chosen and seated in a row 

for a picture. How many different pictures are possible? 

Solution 

Thus, there are 

10  9  8  7  6  5 =151200          different pictures. 

Note that: 

                     

10
6

   10 9 8 7 6 5

4 3 2 1
10 9 8 7 6 5

4 3 2 1

10!
151200

4!

P

    

  
      

  

  
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Example 19:  

Mr. Jones has 10 books that he is going to put on his bookshelf. 

Of these, 4 are mathematics books, 3 are chemistry books, 2 are 

history books, and 1 is a language book. Jones wants to arrange 

his books so that all the books dealing with the same subject are 

together on the shelf. How many different arrangements are 

possible? 

Solution:  

There are 4! 3! 2! 1! Arrangements such that the mathematics 

books are first in line, then the chemistry books, then the history 

books, and then the language book. Similarly, for each ordering 

of the subjects, there are 4! 3! 2! 1! possible arrangements. Hence, 

as there are 4! Possible orderings of the subjects, the desired 

answer is: 

           4!  4! 3! 2! 1! = 6912.  

Example 20: 

A class in probability theory consists of 6 men and 4 women.  An 

examination is given, and the students are ranked according to 

their performance. Assume that no two students obtain the same 

score.  

(a) How many different ranking are possible?  

(b) If the men are ranked just among themselves and the women 

among themselves,  how many different rankings are possible?  

(c) What is the probability that women receive the top 4 scores ? 
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Solution:  

(a) As each ranking corresponding to a particular ordered 

arrangement of the 10 people, we see that the answer to 

this part is 10! = 3628800. 

(b) As there are 6! Possible ranking of the men among 

themselves and 4! possible ranking of the women among 

themselves, it follows from there are  

2 (6!)(4!) = 2 (720) (24) = 34560 possible ranking in this 

case. 

(c) Let A be the event that women receive the top 4 scores, 

then, n(A) = (4!) (6!) = (24)(720) = 17280 . 

n(S) = 10! = 3628800, so 

( ) 4! 6! 1
( ) 10! 210

( )
n A

n S
P A   

 

 

 Permutation with repetition 

The number of distinct permutations of n objects of which n1 are 

alike, n2 are alike ,…, nr are alike , is given by: 

                
1 2

!
!  !  ... !r

n
n n n

 

Example 21:  

What is the number of permutations of the letters in the word 

“ball”? 
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Note that:  

(i) The answer is not 4!since we do not have 4 distinct objects. 

(ii) We have a set of only 3 distinct objects .But note that the 

answer is not 3!.The permutations here involve repetitions 

Solution 

 Suppose that there are no repetitions: 

                        ball 

 In this case, there are 4! permutations. 

 But for each of these permutations, there is exactly one 

permutation where l and l switch positions. 

 These are, really, the same permutations. 

 Thus, the number of permutations of the letters in “ball” is 

                             4!/2! = 12 

 

Example 22:  

How many distinct permutations can formed from all the letters of 

each word  

(i) them                   (ii) that                       (iii) radar       

 

(iv) unusual             (v) sociological   

 

Solution:  

(i) 4! = 24 , since there are 4 letters and no repetition.  
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(ii) 
4!

2!
12  since there are 4 letters of which 2 are t’s. 

(iii)  
5!

2! 2!
30   since there are 5 letters of which 2 are r’s and 2 

are a’s. 

(iv) 
7!

3!
840    since there are 7 letters of which 3 are u’s. 

(v)  
12!

3! 2! 2! 2!
       since there are 12 letters of which 3  are 

o’s  , 2 are i’s , 2 are c’s and 2 are l’s. 

  

3.Combinations: 

The number of selections of size r from a set of n distinct objects 

is given by: 

                     

!
    

( )!  !

n

r

n n
C

r n r r

 
  

   

 

Example 23:  

A committee of 3 is to be selected from a group of 20 people. 

How many different committees are possible? 

 

Solution:  

There are 
20

3

20 20!
 =1140   

3 3! 17!
C

 
  
 

 possible committees. 
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Example 24: 

 A committee of 5 is to be selected from a group of 6 men and 9 

women. If the selection is made randomly, what is the probability 

that the committee consists of 3 men and 2 women?  

Solution:  

If A represents the event of selecting the committee, then:  

n(S) =
15

5

15
    

5
C

 
  
 

, and n (A) =  
6 9

3 2

6 9
    

3 2
C C

  
   
  

, 

There for,  

          

6 9
 

3 2( ) 240
( ) 100115

5

( )
n A

n S
P A

   
   
   

 
 
 

  

          

Example 25:  

Two balls are selected at random from a bag with four white balls 

and three black balls, where order is not important.  

 

1- What would be an appropriate sample space S? 

Solution: Denote the set of balls by 

                 B = {w1, w2, w3, w4, b1, b2, b3} 

The number of outcomes in S (which are sets of two balls) is then

7

2
21C   

2- What is the probability that both balls are white? 

                                        
4

2

7

2

6 2
,

21 7

C

C
   

3- What is the probability that both balls are black? 
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3

2

7

2

3 1
,

21 7

C

C
   

4- What is the probability that one is white and one is black? 

                                       
3 4

1 1

7

2

* 4 3 4
,

21 7

C C

C


   

Example 26:  

A young boy asks his mother to get 5 Game cartridges from his 

collection of 10 arcade and 5 sports games. How many ways are 

there that his mother can get 3 arcade and 2 sports games?  

Solution:  

The number of ways of selecting 3 cartridges from 10 is  

10 10
120

3 3 7

 
  

 

!

!( )!
 

The number of ways of selecting 2 cartridges from  

5 5
10

2 2 2

 
  

 

!

!( )!
 

Using the multiplication rule with n1 = 120 and n2 = 10, we have 

(120) (10) = 1200 ways. 

 

6.Conditional Probability, Independence, and the Product 

Rule  

One very important concept in probability theory is conditional 

probability. In some applications, the practitioner is interested in 

the probability structure under certain restrictions.  

The probability of an event B occurring when it is known that 

some event A has occurred is called a conditional probability 
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and is denoted by P(B|A). The symbol P(B|A) is usually read “the 

probability that B occurs given that A occurs” or simply “the 

probability of B, given A.”  

 

Definition:  

Conditional Probability. Suppose that we learn that an event B 

has occurred and that we wish to compute the probability of 

another event A taking into account that we know that B has 

occurred. The new probability of A is called the conditional 

probability of the event A given that the event B has occurred and 

is denoted P (A|B).  

If P(B) > 0, 

            we compute this probability as P(A|B) =P(A   B)/P(B) 

 

Example 27:  

The probability that a regularly scheduled flight departs on time is 

P(D) =0.83; the probability that it arrives on time is P(A) = 0.82; 

and the probability that it departs and arrives on time is 

 P(DA) = 0.78.  

Find the probability that a plane  

(a) arrives on time, given that it departed on time. 

(b) departed on time, given that it has arrived on time.  

 

Solution 
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 Using Definition of Conditional Probability, we have the 

following.  

(a) The probability that a plane arrives on time, given that it 

departed on time, is                         

     P(A|D) = P(D A)/P(D)  

                           = 0.78/ 0.83 = 0.94.  

(b) The probability that a plane departed on time, given that it has 

arrived on time, is  

                 P(D|A) = P(D   A)/P(A) = 0.78/ 0.82 = 0.95.  

The notion of conditional probability provides the capability of 

reevaluating the idea of probability of an event in light of 

additional information, that is, when it is known that another 

event has occurred. The probability P(A|B) is an updating of P(A) 

based on the knowledge that event B has occurred. The 

probability that it arrives on time, given that it did not depart on 

time i.e P(A|
cD ) is  

                   P(A|
cD ) =P(A 

cD )/P(
cD ) 

                                     = 0.82 − 0.78 / 0.17 = 0.24. 

1.Independent Events  

In the die-tossing experiment Example, we note that P(B|A) = 2/5 

whereas P(B) = 1/3. That is, P(B|A) ≠ P(B), indicating that B 

depends on A. Now consider an experiment in which 2 cards are 

drawn in succession from an ordinary deck, with replacement. 

The events are defined as  
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A: the first card is an ace, B: the second card is a spade. Since the 

first card is replaced, our sample space for both the first and the 

second draw consists of 52 cards, containing 4 aces and 13 

spades. Hence,  

                  P(B|A) = 13 /52 = 1/4 and P(B) = 13 /52=1/4  

That is, P(B|A) = P(B). When this is true, the events A and B are 

said to be independent.  

 

Definition:  

Two events A and B are independent if and only if P(B|A) = P(B)  

or P(A|B) = P(A), assuming the existences of the conditional 

probabilities. Otherwise, A and B are dependent.  

The condition P(B|A) = P(B) implies that P(A|B) = P(A), and 

conversely.  

For the card-drawing experiments, where we showed that 

                                    P(B|A) = P(B) = 1/4,  

we also can see that P(A|B) = P(A) = 1/13.  

The Product Rule, or the Multiplicative Rule (or product 

rule), which enables us to calculate the probability that two 

events will both occur.  

 

Theorem: 

 If in an experiment the events A and B can both occur, then   

             P(A   B) = P(A)P(B|A), provided P(A) > 0.  
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Thus, the probability that both A and B occur is equal to the 

probability that A occurs multiplied by the conditional probability 

that B occurs, given that A occurs. Since the events A B and B A 

are equivalent, it follows that we can also write 

       P(A   B) = P(B A) = P(B)P(A|B) = P(A)P(B|A) . 

In other words, it does not matter which event is referred to as A 

and which event is referred to as B.  

 

Theorem: 

Two events A and B are independent if and only if  

                           P(AB) = P(A)P(B).  

Therefore, to obtain the probability that two independent events 

will both occur, we simply find the product of their individual 

probabilities. 

 

Example 29:  

You are given the following information on Events A, B, C, and 

D. Where P(A)=0.1,P(C)=0.4, P(B)=0.3, P(C|B)=0.6, 

P(A∩C)=0.04, P(B|A)=0.9 

(i) Compute  cP A C .  

(ii) Compute  cP C B . 
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(iii) Are A and B mutually exclusive? Explain. 

(iv) Are A and C independent? Explain. 

Solution: 

(i)       0.4 0.04 0.36cP A C P C P A C       . 

(ii) 

            1 1 1 0.4 0.18

                 1 0.22 0.78

c CP C B P B C P C P B C            

  

 

since      | 0.3 0.6 0.18P B C P B P C B      

(iii) Since      | 0.1 0.9 0.09 0P A B P A P B A      , A and B are 

not mutually exclusive.  

(iv) Since      0.04 0.1 0.4P A C P A P C     , A and B are 

independent.  

 

Example 30: 

An electrical system consists of four components as illustrated in 

the next Figure . The system works if components A and B work 

and either of the components C or D works. The reliability 

(probability of working) of each component is also shown In the 

Figure . Find the probability that (a) the entire system works and 

(b) the component C does not work, given that the entire system 

works. Assume that the four components work independently.  



Ch.1 [Probability- Sample Space] 

 

  
Page 26 

 
  

 

 

Solution: 

In this configuration of the system, A, B, and the subsystem C and 

D constitute a serial circuit system, whereas the subsystem C and 

D itself is a parallel circuit system. 

(a) Clearly the probability that the entire system works can be 

calculated as follows:  

P[A B  (C U D)] = P(A)P(B)P(C U D)  

                                   = P(A)P(B)[1 − P(C
cD

c
)]  

                                   = P(A)P(B)[1 − P(C
c
)P(D

c
)]  

                                   = (0.9)(0.9)[1 − (1 − 0.8)(1 − 0.8)]  

                                  = 0.7776.  

The equalities above hold because of the independence among the 

four components.  

(b) To calculate the conditional probability in this case, notice 

that  

P = P(the system works but C does not work)/P(the system 

works) = P(A B  C
c
 D)/P(the system works)  
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                                 = (0.9)(0.9)(1 − 0.8)(0.8)/0.7776 = 0.1667.  

The multiplicative rule can be extended to more than two-event 

situations.  

 

Theorem: If, in an experiment, the events A1,A2, . . . , Ak can 

occur, then  

P(A1  A2  ·· ·  Ak)=  P(A1)P(A2|A1)P(A3|A1A2) · · · P(Ak|A1 

A2 · · · Ak−1).  

If the events A1,A2, . . . , Ak are independent, then  

P(A1A2 ·· · Ak) = P(A1)P(A2) · · · P(Ak).  

 

7.Bayes’ Theorem:  

Let A1, A2, . . . , Ak be a collection of k mutually exclusive and 

exhaustive events with prior probabilities p(Ai), I = 1, 2,…k, . 

Then for any other event B for which p(B) > 0 , the posterior 

probability of Aj given that B has occurred is  

 

1


 



( ) (B/ )p(A )
( / )

(B) (B/ )p(A )

j j j

kj

i i

i

P A B P A
P A B

p P A

 

The transition from the second to the third expression above rests 

on using the multiplication rule in the numerator and the law of 

total probability in the denominator.  
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Example 31:  

Incidence of a rare disease. Only 1 in 1000 adults is afflicted with 

a rare disease for which a diagnostic test has been developed. The 

test is such that when an individual actually has the disease, a 

positive result will occur 99% of the time, whereas an individual 

without the disease will show a positive test result only 2% of the 

time. If a randomly selected individual is tested and the result is 

positive, what is the probability that the individual has the 

disease?  

Solution 

To use Bayes’ theorem, let A1 = individual has the disease, A2= 

individual does not have the disease, and B = positive test result.  

Then p(A1) =0.001, p(A2) = 0.99, , p(B\A1) =0.99, and p(B\A2) = 

0.02 .  

 

The tree diagram for this problem is the following Figure .  
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Next to each branch corresponding to a positive test result, the 

multiplication rule yields the recorded probabilities. Therefore, 

P(B) = .00099 + .01998 = 0.02097,  

from which we have  

1

1

0 00099
0 047

0 02097


  
( ) .

( / ) .
(B) .

P A B
P A B

p
 

This result seems counterintuitive; the diagnostic test appears so 

accurate that we expect someone with a positive test result to be 

highly likely to have the disease, whereas the computed 

conditional probability is only .047. However, the rarity of the 

disease implies that most positive test results arise from errors 

rather than from diseased individuals. The probability of having 

the disease has increased by a multiplicative factor of 47 (from 

prior .001 to posterior .047); but to get a further increase in the 

posterior probability, a diagnostic test with much smaller error 

rates is needed.  
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8. Exercises  

1. If a multiple-choice test consists of 5 questions, each with 4 

possible answers of which only 1 is correct,  

(a) in how many different ways can a student check off one 

answer to each question?  

(b) in how many ways can a student check off one answer to each 

question and get all the answers wrong?  

2. A contractor wishes to build 9 houses, each different in design. 

In how many ways can he place these houses on a street if 6 lots 

are on one side of the street and 3 lots are on the opposite side?  

3. A box contains 500 envelopes, of which 75 contain $100 in 

cash, 150 contain $25, and 275 contain $10. An envelope may be 

purchased for $25. What is the sample space for the different 

amounts of money?  

Assign probabilities to the sample points and then find the 

probability that the first envelope purchased contains less than 

$100.  

 

4. If 3 books are picked at random from a shelf containing 5 

novels, 3 books of poems, and a dictionary, what is the 

probability that  

(a) the dictionary is selected?  

(b) 2 novels and 1 book of poems are selected?  
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 5. A class in advanced physics is composed of 10 juniors, 30 

seniors, and 10 graduate students. The final grades show that 3 of 

the juniors, 10 of the seniors, and 5 of the graduate students 

received an A for the course. If a student is chosen at random 

from this class and is found to have earned an A, what is the 

probability that he or she is a senior?   

 

6. In the senior year of a high school graduating class of 100 

students, 42 studied mathematics, 68 studied psychology, 54 

studied history, 22 studied both mathematics and history, 25 

studied both mathematics and psychology, 7 studied history but 

neither mathematics nor psychology, 10 studied all three subjects, 

and 8 did not take any of the three. Randomly select a student 

from the class and find the probabilities of the following events.  

(a) A person enrolled in psychology takes all three subjects.  

(b) A person not taking psychology is taking both history and 

mathematics.  

 

7. The probability that a married man watches a certain television 

show is 0.4, and the probability that a married woman watches the 

show is 0.5. The probability that a man watches the show, given 

that his wife does, is 0.7. Find the probability that  

(a) a married couple watches the show;  

(b) a wife watches the show, given that her husband does; 
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(c) at least one member of a married couple will watch the show.  

 

8. In a certain region of the country it is known from past 

experience that the probability of selecting an adult over 40 years 

of age with cancer is 0.05. If the probability of a doctor correctly 

diagnosing a person with cancer as having the disease is 0.78 and 

the probability of incorrectly diagnosing a person without cancer 

as having the disease is 0.06, what is the probability that an adult 

over 40 years of age is diagnosed as having cancer?  
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Chapter 2  

 
 

Random Variables and Expectation 
 
 

1. Introduction 

We have mentioned that our interest in the study of a random 

phenomenon is in the statements we can make concerning the 

events that can occur, and these statements are made based on 

probabilities assigned to simple outcomes. One of the immediate 

steps that can be taken in this unifying attempt is to require that 

each of the possible outcomes of a random experiment be 

represented by a real number. In this way, when the experiment is 

performed, each outcome is identified by its assigned real number 

rather than by its physical description. For example, when the 

possible outcomes of a random experiment consist of success and 

failure, we arbitrarily assign the number one to the event 

‘success’ and the number zero to the event ‘failure’. The 

associated sample space has now 1, 0 as its sample points instead 

of success and failure, and the statement ‘the outcome is 1’ means 

‘the outcome is success’.  

 Consequently, sample spaces associated with many random 

experiments of interest are already themselves sets of real 

numbers. The real-number assignment procedure is thus a natural 

unifying agent. On this basis, we may introduce a variable, which 
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is used to represent real numbers, the values of which are 

determined by the outcomes of a random experiment. 

 

2. Random variable 

 Consider a random experiment to which the outcomes are 

elements of sample space in the underlying probability space. In 

order to construct a model for a random variable, we assume that 

it is possible to assign a real number ( )X s for each outcome s 

following a certain set of rules. We see that the ‘number’ ( )X s  is 

really a real-valued point function defined over the domain of the 

basic probability space 

 

Definition1. The point function ( )X s  is called a random variable 

if (a) it is a finite real-valued function defined on the sample 

space S of a random experiment for which the probability 

function is defined, and (b) for every real number X, the set 

{ : ( ) }s X s X  is an event. 

 To see more clearly the role a random variable plays in the 

study of a random phenomenon; consider again the simple 

example where the possible outcomes of a random experiment are 

success and failure. Let us again assign number one to the event 

success and zero to failure. If X is the random variable associated 

with this experiment, then X takes on two possible values: 1 and 

0. Moreover, the following statements are equivalent: 
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1- The outcome is success. 

2- The outcome is 1. 

3- X=1 

 The random variable is called a random variable if it is 

defined over a sample space having a finite or a countably infinite 

number of sample points. In this case, random variable takes on 

discrete values, and it is possible to enumerate all the values it 

may assume. In the case of a sample space having an uncountable 

infinite number of sample points, the associated random variable 

is called a random variable, with its values distributed over one or 

more continuous intervals on the real line. We make this 

distinction because they require different probability assignment 

considerations. Both types of random variables are important in 

science and engineering. 

 

3. Discrete Random variables 

 To each point in the sample space we will assign a real 

number denoting the value of the variable X. The value assigned 

to X will vary from one sample point to another, but some points 

may be assigned the same numerical value. Thus, we have 

defined a variable that is a function of the sample points in S, and 

{all sample points where X = a} is the numerical event assigned 

the number a. Indeed, the sample space S can be partitioned into 

subsets so that points within a subset are all assigned the same 
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value of X. These subsets are mutually exclusive since no point is 

assigned two different numerical values. The partitioning of S is 

symbolically indicated in for a random variable that can assume 

values 0, 1, 2, 3, and 4.  

 

Definition 2: A random variable X is said to be discrete if it can 

assume only a finite or countably infinite number of distinct 

values.  

 

Example.1: 

Let X is the random variable defined by the Head appear, in 

times, for toss a coin 3 times respectively. Find the value of x. 

Solution: The sample space  

               { , , , , , , , }S HHH HHT HTH THH HTT THT TTH TTT  

Let Head is the random variable X, then the conjugate space    

                 iX(s)={3,2,1,0} then x =0,1,2,3  

 

Example.2:  

Suppose a sampling plan involves sampling items from a process 

until a defective is observed. The evaluation of the process will 

depend on how many consecutive items are observed. In that 

regard, let X be a random variable defined by the number of items 

observed before a defective is found. With N a non-defective and 
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D a defective, sample spaces are S = {D} given X = 1, S = {ND} 

given X = 2, S = {NND} given X = 3, and so on. 

 

3.1. Discrete probability distribution 

 A discrete random variable assumes each of its values with 

a certain probability. For a discrete variable X can be represented 

by a formula, a table, or a graph that provides (i.e: example 1) 

1- ( ) ( ) ( )P x P X x x X s       

2- 0 ( ) 1P x     

3- ( ) 1iP x   

 

Example.3: 

 A shipment of 20 similar laptop computers to a retail outlet 

contains 3 that are defective. If a school makes a random purchase 

of 2 of these computers, find the probability distribution for the 

number of defectives. 

Solution: Let X be a random variable whose values x are the 

possible numbers of defective computers purchased by the school. 

Then x can only take the numbers 0, 1, and2. 

 Now we calculate,
136

(0) ( 0)
190

P P X   , 

     
51

(1) ( 1)
190

P P X   ,       

    
3

(3) ( 3)
190

P P X    

Thus, the probability distribution of X is 

 

    x  
0        1        2        

3 

  P(x)  
1/8   3/8     3/8      

1/8 

    x       0                  1                2 

  P(x)  136/190         51/190       3/190       
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Notice that the probabilities associated with all distinct values of a 

discrete random variable must sum to 1.  

Example.4:  

Suppose that a pair of fair dice is tossed and let the discrete 

random variable X denote the sum of the points. Obtain the range 

of the discrete random variable X. 

Solution: 

Then  x= 2,3,4,5,6,7,8,9,10,11,12  

Random 

Variable 

X 

           Events 

1x =2   1A = (1,1)  

2x =3   2A = (1,2),(2,1)  

3x =4   3A = (2,2),(3,1),(1,3)  

4x =5   4A = (1,4),(4,1),(3,2),(2,3)  

5x =6   5A = (3,3),(2,4),(4,2),(5,1),(1,5)  

6x =7   7A = (3,4),(4,3),(5,2),(2,5),(1,6),(6,1)  

7x =8   7A = (4,4),(5,3),(3,5),(6,2),(2,6)  

8x =9   8A = (4,5),(5,4),(3,6),(6,3)  

9x =10   9A = (5,5),(4,6),(6,4)  

10x =11  10A = (5,6),(6,5)  

11x =12   11A = (6,6)  
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Example.5:  

Find the probability distribution corresponding to the random 

variable X of a coin is tossed twice. And Construct a probability 

graph. 

Solution: 

Assuming that the coin is fair we have  

 S= (H,H),(H,T),(T,H),(T,T)  

Let  1A (T,T) ,  2A = (H,T),(T,H) , and  3A = (H,H)  

1 2 3

1 2 1 1
P(A )= , P(A )= = , P(A )=

4 4 2 4
 

Then 
1

1
P(X=0)=P(A )=

4
, 

    
2

1
P(X=1)=P(A )=

2
  and 

3

1
P(X=2)=P(A )=

4
 

X 0 1 2 

P(X) 1

4
 1

2
 1

4
 

 

A probability graph can be obtained by use of a bar chart. 
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3.2. The cumulative distribution function, or distribution 

function for a random variable X is defined by 

                               P(X x)=F(x) . 

Where x is any real number, i.e.  - <x< . The distribution 

function can be obtained from the probability function by 

 

F(x)=P(X x)= P(x)

0 x




  

 There are many problems where we may wish to compute 

the probability that the observed value of a random variable X 

will be less than or equal to some real number x. Writing F(x) = 

P(X ≤ x) for every real number x, we define F(x) to be the 

cumulative distribution function of the random variable X.  

Example.6: 

Consider the simple condition in which components are arriving 

from the production line and they are stipulated to be defective or 

not defective. 

Solution: 

 Define the random variable X by  

                                     X = 1, if the component is defective,  

                                     0, if the component is not defective.  

Clearly the assignment of 1 or 0 is arbitrary though quite 

convenient. The random variable for which 0 and 1 are chosen to 
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describe the two possible values is called a Bernoulli random 

variable.  

Example.6: 

A store carries flash drives with either1 GB, 2 GB, 4 GB, 8 GB, 

or 16 GB of memory.  The accompanying table gives the 

distribution of X = the amount of memory in a purchased drive: 

 

 

 

Let’s first determine F(x) for each of the five possible values of 

X:  

F(16) = P(X ≤ 16) = 1  

F(8) = P(X ≤ 8) = p(1) + p(2) + p(4) + p(8) = .90  

F(4) = P(X≤ 4) = P(Y = 1 or 2 or 4) = p(1) + p(2) + p(4) = .50  

F(2) = P(X ≤ 2) = P(Y = 1 or 2) = p(1) + p(2) = .15  

F(1) = P(X≤ 1) = P(Y = 1) = p(1) = .05  

Now for any other number x, F(x) will equal the value of F at the 

closest possible value of X to the left of x.  

 

4. Continuous Random variables  

 A continuous random variable has a probability of 0 of 

assuming exactly any of its values. Consequently, its probability 

distribution cannot be given in tabular form. We shall concern 

X 1 2 4 8 16 

p(X) 0.05 0.10 0.35 0.40 0.10 
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ourselves with computing probabilities for various intervals of 

continuous random variables such as: 

                       P(a < X < b),       P(W ≥ c), and so forth. 

 Note that when X is continuous, for a continuous random 

variable, its Probability Density Function, is a continuous 

function of and the derivative 

                                               
( )

f(x)=
dF x

dx
. 

The cumulative distribution function F(x) of a continuous 

random variable  

X with density function f(x) is  

                                  F(x) = P(X ≤ x) = ( )

x

f x dx


 ,   −∞ < x < ∞.  

A function f(x) is called probability density function (p.d.f) if the 

following conditions satisfied 

  1-  f(x) 0  

  2. 

-

f(x) dx=1






 

                    3-  

                       
P(a X b) =P(a X b)=P(a X b)=

=P(a X b)= f(x) dx

     

  
b

a
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Should this range of X be a finite interval, it is always possible to 

extend the interval to include the entire set of real numbers by 

defining f(x) to be zero at all points in the extended portions of the 

interval. In the Figure, the probability that X assumes a value 

between a and b is equal to the shaded area under the density 

function between the ordinates at x = a and x = b, and from 

integral calculus is given by  

( ) ( )

b

a

P a x b f x dx     

Example.7:  

A continuous random variable X has a density function given by 

1

( )
0<x 4

= 4

0 elsewhere

f x








 

Show that ( )f x  is a valid probability density function. 

Solution 

It is clear that ( ) 0f x   
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4

0

1
( )

4
dx+0 1

b

a

f x dx = =  

Then ( )f x  is a density function. 

 

Example.8:  

A continuous random variable X has a density function given by 

( )
0 x 3

0 otherwise
f x





 2k x
=  

(a) Find the constant k 

(b) Compute P(1<X<2)  

Solution 

a) Since ( )f x  satisfies property (1) ifk 0 , it must satisfy 

property (2) in order to be a density function. Now: 

3

2 3

0 3

- - 0

3

0

( ) ( ) ( ) ( )

kx

dx= dx+ dx+ dx

3k
=0+ dx+0= x =103

f x f x f x f x

 

 

  

   



 

1
9k=1 k=

9
  

b) 

2

1

2
31 x 8 1 72P(1<X<2) = x dx= = - =

9 27 27 27 27
1

  
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Example.9:  

Suppose that the error in the reaction temperature, in ◦C, for a 

controlled laboratory experiment is a continuous random variable 

X having the probability density function  

                                           

2

, 1 2
(x) 3

0

x
x

f

elsewhere


  

 



  

(a) Verify that f(x) is a density function.  

(b) Find P(0 < x ≤ 1).  

Solution 

 We use Definition.  

(a) Obviously, f(x) ≥ 0. To verify condition 2, we have 

                                 
2 2

1

( ) 1
3

b

a

x
f x dx dx



    

(b) 
1 2

0

1
(0 1)

3 9

x
p x dx     

 

5. Expectations and Moments 

 While a probability distribution [FX (x), PX (x), or f X (x)] 

contains a complete description of a random variable X, it is often 

of interest to seek a set of simple numbers that gives the random 

variable some of its dominant features. These numbers include 

moments of various orders associated with X.  
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Definition. 

 Let g(X) be a real-valued function of a random variable X. 

The mathematical expectation, or simply expectation, of g(X), 

denoted by 

                           ( ( )) ( ) ( )i X i

i

E g X g x P x  

If X is discrete, where x 1, x 2, . . . are possible values assumed by 

X. When the range of i extends from 1 to infinity, the sum 

( ) ( )i X i

i

g x P x exists if it converges absolutely. 

 If random variable X is continuous, the expectation is 

defined by 

                                 
( ( )) ( ) ( )XE g X g x P x dx





 
 

Let us note some basic properties associated with the expectation 

operator. 

For any constant c and any functions g(X) and h(X) for which 

expectations 

exist, we have 

1- ( )E c c  

2- ( ( )) ( ( ))E cg X cE g X  

3- ( ( ) ( )) ( ( )) ( ( ))E g X h X E g X E h X    
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5.1. Moments  

 

 Let ( ) ng X X , n=1, 2, …; the expectation  ( )nE X , when it 

exist, is called the n
th 

moment of X. It is denoted by n and is given 

by 

                    ( ) ( )n n

n i i

i

E X x P x              for X is discrete. 

                   ( ) ( )n

n E X x f x dx




            for X is continuous. 

 

 

Example.10:  

Let X is the waiting time (in minutes) of a customer waiting to be 

served at a ticket counter has the density function. 

                                     

22 for  x 0
( )

0, .

xe
f x

elsewhere

 

  

 Determine the average waiting time. 

Solution: 

                     
0

( ) ( )E X xf x dx



   

                                
2

0

1
2

2

xxe dx



   

 

Proof that            Var(X) = E((X − μ)2) = E(X2) - μ2 
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                                    = E(X2 − 2μX + μ2) 

                                    = E(X2) − E(2μX) + E(μ2) 

                                     = E(X2) − 2μE(X) + μ2, 

= ∑ x2p(x) − 2μ ∑ xp(x) + μ2 ∑ p(x) 

= E(X2) − 2μE(X) + μ2 × 1 

= E(X2) − 2μ2 + μ2, as E(X) = μ 

= E(X2) − μ2 
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6. Exercises.2 

Ex.1: In the experiment of tossing a fair die once, the range of the 

random variable X is {1, 3} where "1" is specified for the 

appearance of an odd number on the upper face and "3" is 

specified for the appearance of an even number. Find the 

probability distribution of this variable.   

 

Ex.2: In the experiment of tossing a coin three consecutive times 

to observe the type of the appearing faces, if he random variable 

"X" is defined by "Twice the number of the appearing heads." 

Write the probability distribution of X. 

 

Ex.3: Let X be a continuous random variable with probability 

density function given by       
23 , 0 1

( )
0

x x
f x

elsewhere

  
 


  

Find F(x). Graph both f (x) and F(x).  

 

Ex.4: Let X be a discrete random variable taking the values x = 0, 

1, 2with probabilities 1/4, 1/2, 1/4 respectively. Plot F(x). 

Ex.5: Let the distribution function of random variable X given as 

follows 

x 1 2 3 4 

f(x) 1/8 3/8 3/8 1/8 

Determine: 
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(a) Probability function 

(b) P(1<X 3)  

(c) P(X 2)  

(d) P(X<3)  

Exe.6:       Let 
K(2-x) for 0 x 2

f(x)=
0 elsewhere





 
 

(a) Find K such that f(x).density function 

(b) Plot f(x). 

(c) ( )E X  

Ex.7: A continuous random variable X that can assume values 

between x = 1 and x = 3 has a density function given by f(x) = 1/2.  

(a) Show that the area under the curve is equal to 1.  

(b) Find P(2 < X < 2.5). (c) Find P(X ≤ 1.6).  

(d) Find F(x). Use it to evaluate P(2 < X < 2.5).  

(e) ( )E X  

 

Ex.8: Consider the density function  

                                      , 0 1
( )

0

k x x
f x

elsewhere

  
 


.  

(a) Evaluate k.  

(b) Find F(x) and use it to evaluate P(0.3 < X < 0.6).  

(e) ( )E X  
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Chapter 3 

 

Probability Distributions 

 

1. Discrete probability distributions 

No matter whether a discrete probability distribution is 

represented graphically by a histogram, the behavior of a random 

variable is described. Often, the observations generated by 

different statistical experiments have the same general type of 

behavior.  Consequently, discrete random variables associated 

with these experiments can be described by essentially the same 

probability distribution and therefore can be represented by a 

single formula. In fact, one needs only a handful of important 

probability distributions to describe many of the discrete random 

variables encountered in practice. Such a handful of distributions 

describe several real-life random phenomena. For instance, in a 

study involving testing the effectiveness of a new drug, the 

number of cured patients among all the patients who use the drug 

approximately follows binomial, hypergeometric, and Poisson 

distributions. 
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1.1. The Binomial Distribution  

 An experiment often consists of repeated trials, each with 

two possible outcomes that may be labeled success or failure. The 

most obvious application deals with the testing of items as they 

come off an assembly line, where each trial may indicate a 

defective or a non-defective item. We may choose to define either 

outcome as a success. The process is referred to as a Bernoulli 

process. Each trial is called a Bernoulli trial. Observe, for 

example, if one were drawing cards from a deck, the probabilities 

for repeated trials change if the cards are not replaced. That is, the 

probability of selecting a heart on the first draw is 1/4, but on the 

second draw it is a conditional probability having a value of 13/51 

or 12/51, depending on whether a heart appeared on the first 

draw: this, then, would no longer be considered a set of Bernoulli 

trials. 

 If we define “success” as a defective component, then p is 

the proportion of defective components in the population. Many 

experiments consist of performing a sequence of Bernoulli trials. 

For example, we might sample several components from a very 

large lot and count the number of defectives among them. This 

amounts to conducting several independent Bernoulli trials and 

counting the number of successes. The number of successes is 

then a random variable, which is said to have a binomial 

distribution.  
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 The number X of successes in n Bernoulli trials is called a 

binomial random variable. The probability distribution of this 

random variable is called the binomial distribution, and its values 

will be denoted by B (n, p) since they depend on the number of 

trials and the probability of a success on a given trial. 

   

Probability density function of a Binomial distribution 

 We can now generalize this result to produce a formula for 

the probability of x successes in n independent Bernoulli trial can 

result in a success with probability p and a failure with probability 

q = 1-p. Then the probability distribution of the binomial random 

variable X, the number of successes in n independent trials. In 

other words, we can compute P(X = x) where X ∼ Bin (n, p).  

 We can now define the probability mass function for a 

binomial random variable.  

          P(x) = ( ) , 0,1,2,...,n x n x

xP X x C p q x n    

Properties 

The discrete random variable of Binomial distribution for X ∼ Bin 

(n, p),  

Then  

1)  Mean:   E(X) = μ = np.  

2) Variance:  Var (X) =  = npq  
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Example.1:  

The probability that a certain kind of component will survive a 

shock test is 3/4. Find the probability that exactly 2 of the next 4 

components tested survive. 

Solution: 

The three characters of Binomial are n=4,   p=3/4, and  

                 q=1-3/4=1/4  

Then    ( ) 0,1,2,3,4n x n x

xP X x C p q x    

            4 2 2

2

3 1
( 2) ( ) ( )

4 4
P X C   

                           
27

128
  

Example.2:  

Of all the new vehicles of a certain model that are sold, 20% 

require repairs to be done under warranty during the first year of 

service. A particular dealership sells 14 such vehicles.  

1) What is the probability that fewer than five of them require 

warranty repairs?  

2) What is the probability that more than 2 of the 14 vehicles 

require warranty repairs?  

Solution:  

Let X represents the number of vehicles that require warranty 

repairs. Then  

                          X ∼ Bin(14, 0.2).  
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1) The probability that fewer than five vehicles require 

warranty repairs is  

                 P(X ≤ 4) = [P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)  

                                + P(X = 4)]=    0.870.  

2) What is the probability that more than 2 of the 14 vehicles 

require warranty repairs?  

Let X represents the number of invoices in the sample that receive 

discounts.  

                      P(X > 2) = 1− P(X ≤ 2).  

We find that P(X ≤ 2) = 0.448.  

Therefore P(X > 2) = 1 − 0.448 = 0.552.  

 

Example.3:  

A large chain retailer purchases a certain kind of electronic device 

from a manufacturer. The manufacturer indicates that the 

defective rate of the device is 3%. The inspector randomly picks 

20 items from a shipment. What is the probability that there will 

be at least one defective item among these 20? 

Solution 

           n=20,   p=0.03,   q=0.97 

          ( 1) 1 ( 0)P X P X     

          20 0 20

0( 1) 1 (0.03) (0.97) 0.4562P X C     
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Example.4: 

Refer to the above example. What is the probability that more 

than or equal 2 of the 10 items are defective?  

          n=10,   p=0.03,   q=0.97 

          ( 2) 1 ( ( 0) ( 1) ( 2))P X P X P X P X         

          ( 2) 1 (0.77374 0.2281 0.0317) 0.0028P X                

                                                                        

1.2. The Poisson distribution  

 Experiments yielding numerical values of a random 

variable X, the number of outcomes occurring during a given time 

interval or in a specified region, are called Poisson experiments. 

The time interval may be of any length, such as a minute, a day, a 

week, a month, or even a year. The specified region could be a 

line segment, an area, a volume, or perhaps a piece of material. In 

such instances, X might represent the number of field mice per 

acre, the number of bacteria in a given culture, or the number of 

typing errors per page. A Poisson experiment is derived from the 

Poisson process and possesses the following properties: 

 

1. The number of outcomes occurring in one time interval or 

specified region of space is independent of the number that occur 

in any other disjoint time interval or region.  
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2. The probability that a single outcome will occur during a very 

short time interval or in a small region is proportional to the 

length of the time interval.  

 

3. The probability that more than one outcome will occur in such 

a short time 

interval or fall in such a small region is negligible. 

 

Probability density function of a Poisson distribution 

 The probability distribution of the Poisson random variable 

X, representing the number of outcomes occurring in a given time 

interval or specified region denoted by 

                                       ( ) , 0,1,2,...
!

xe
P X x x

x

 

     

If X is a random variable whose probability mass function is 

given by the above equation, then X is said to have the Poisson 

distribution with parameter λ.  The notation is X ∼ Poisson (λ). 

Properties 

The discrete random variable of Poisson distribution for X ∼ 

Poisson (λ), 

Then  

1)  Mean:   E(X) = μ = λ.  

2) Variance:  Var (X) = λ. 
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Example.5: 

During a laboratory experiment, the average number of 

radioactive particles passing through a counter in 1 millisecond is 

4. What is the probability that 6 particles enter the counter in a 

given millisecond? 

Solution: 

Using the Poisson distribution with x = 6 and λ = 4, we have 

                              
6 44

( 6) 0.1042
6!

e
P X



    

 

Example.6:  

              If X ∼ Poisson (4),     Determine:  

 (1)  P(X ≤ 2)                                            (2) P(X > 1).  

Solution 

(a)  P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)  

                                   = e
−4

 4
0
/ 0! + e

−4
 4

1 
/ 1! + e

−4
 4

2
 / 2!  

                                   = 0.0183 + 0.0733 + 0.1465 = 0.2381 

(b)  P(X > 1), we might try to start by writing  

                                  P(X > 1) = P(X = 2) + P(X = 3) + · · ·  

                                  P(X > 1) = 1 − P(X ≤ 1)  

                                               = 1 − [P(X = 0) + P(X = 1)]  

                                               = 1 − (0.0183 + 0.0733) = 0.908  
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Example.7: 

The number of email messages received by a computer server 

follows a Poisson distribution with a mean of 6 per minute. Find 

the probability that exactly 20 messages will be received in the 

next 3 minutes.  

Solution  

Let X is the number of messages received in 3 minutes.  

The mean number of messages received in 3 minutes is (6) (3) = 

18, 

                                   So X ∼ Poisson (18).  

Using the Poisson (18) probability mass function, we find that  

                         P(X = 20) = e
−18

 18
20

 / 20! = 0.0798  

Remark 1: If X ∼ Poisson (λ), then  

1. X is a discrete random variable whose possible values are the 

non-negative integers.  

2. The parameter λ is a positive constant.  

3. The Poisson probability mass function is very close to the 

binomial probability mass function when n is large, p is small, 

and λ = np.  

Remark 2: For a discrete random variable X, whose probability 

density function that is used to defined the mean and variance. 

Then for two real numbers a and b that is satisfied:   

1) E( a X ± b )= a μ ± b 

2) Var. (a X ± b)= a
2
 σ

2
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Example.8:   

In a manufacturing process where glass products are made, 

defects or bubbles occur, occasionally rendering the piece 

undesirable for marketing. It is known that, on average, 1 in every 

1000 of these items produced has one or more bubbles. What is 

the probability that a random sample of 8000 will yield fewer 

than 7 items possessing bubbles? 

Solution: 

Let X represents the number of bubbles in manufacturing process. 

The mean number of bubbles is 1 per 1000, 

If we take n=8000, and   p=0.001 is binomial distribution 

Then  ( 7) ( 0) ( 1) ... ( 6) 0.3134P X P X P X P X          

Or 

If we the average of bubbles μ = λ =8000*0.001=8 is Poisson 

distribution 

Then  ( 7) ( 0) ( 1) ... ( 6) 0.3134P X P X P X P X          

 

1.3. The Hypergeometric Probability Distribution 

 The simplest way to view the distinction between the 

binomial distribution of this chapter and the hypergeometric 

distribution is to note the way the sampling is done. The types of 

applications for the hypergeometric are very similar to those for 

the binomial distribution. We are interested in computing 

probabilities for the number of observations that fall into a 
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particular category. But in the case of the binomial distribution, 

independence among trials is required. As a result, if that 

distribution is applied to, say, sampling from a lot of items (deck 

of cards, batch of production items), the sampling must be done 

with replacement of each item after it is observed.  

 On the other hand, the hypergeometric distribution does not 

require independence and is based on sampling done without 

replacement. Applications for the hypergeometric distribution are 

found in many areas, with heavy use in acceptance sampling, 

electronic testing, and quality assurance. Obviously, in many of 

these fields, testing is done at the expense of the item being 

tested.  

 That is, the item is destroyed and hence cannot be replaced 

in the sample. Thus, sampling without replacement is necessary 

from a finite population of size N elements, r elements in group A 

and the other N-r elements in group B. Suppose we select n 

elements from the two groups and the random variable X 

represent the number of elements selected from group A. The 

following characterizes the hypergeometric distribution: 

1) The result of each draw can be classified into one of two 

mutually exclusive events (e.g. Pass/Fail or 

Employed/Unemployed). 

2) The probability of a success changes on each draw, as each 

draw decreases the population. 
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Probability density function of a Poisson distribution 

 For a random variable X, the hypergeometric distribution 

density function is given as:             

                      ( ) ( )
i i

i i

r N r

x n x
P X x f x

N

n

  
  

    
 
 
 

 

Where 
i

r

x

 
 
 

is the number of combinations as selecting xi elements 

from group A while 
i

N r

n x

 
 

 
 is the number of combinations as 

selecting n-xi elements from group B. 
N

n

 
 
 

is the total number of 

combinations as selecting n elements from the two groups while 

i i

r N r

x n x

  
  

  
is  the total number of combinations as selecting xi and 

n-xi elements from groups A and B, respectively. 

 

Properties 

The discrete random variable of hypergeometric distribution for  

                        X ∼ H(xi; N, n, r) 

Then  

1)  Mean:   E(X) = 
nr

N
       

2)  Variance:  Var (X) = 2 ( ) ( )(1 )
1

N n r r
n

N N N



 


 



Ch.3 [Probability Distributions] 

 

  
Page 63 

 
  

Example.9:   

A particular part that is used as an injection device is sold in lots 

of 10. The producer feels that the lot is deemed acceptable if no 

more than one defective is in the lot. Some lots are sampled and 

the sampling plan involves random sampling and testing 3 of the 

parts out of 10. If none of the 3 is defective, the lot is accepted. 

Comment on the utility of this plan. 

Solution: 

Let us assume that the lot is truly unacceptable (i.e., that 2 out of 

10 are 

defective). The probability that our sampling plan finds the lot 

acceptable is 

                              

2 8

0 3
( 0) 0.467

10

3

P X

  
  
    
 
 
 

      

Thus, if the lot is truly unacceptable with 2 defective parts, this 

sampling plan will allow acceptance roughly 47% of the time. As 

a result, this plan should be considered faulty.       

 

Example.10:   

Lots of 40 components each are called unacceptable if they 

contain as many as 3 defectives or more. The procedure for 

sampling the lot is to select 5 components at random and to reject 

the lot if a defective is found.  
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1) What is the probability that exactly 1 defective is found in the 

sample if there are 3 defectives in the entire lot? 

2) calculate the mean and variance of the variable X. 

Solution: 

1) Using the hypergeometric distribution with n = 5, N = 40, r= 3, 

and x = 1, we find the probability of obtaining one defective to be 

                            

3 37

1 4
( 1) 0.3011

40

5

P X

  
  
    
 
 
 

                  

Once again this plan is likely not desirable since it detects a bad 

lot (3 defectives) only about 30% of the time. 

2)  Mean:   E(X) = 
5*3 3

40 8

nr

N
         

    Variance: Var (X) = 2 35 3 3
( )*5*( )*(1 ) 0.311
39 40 40

     

 

Example.11:   

Suppose there are 50 officers, 10 female officers and 40 male 

officers. Suppose 20 of them will be promoted. Let X represents 

the number of female promotions. Then, 

Therefore, the probability distribution function for X is  

                             

.10,,1,0  ,

20

50

20

4010

)( 




























 i
ii

iXP
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2. Continuous probability distribution  

 Continuous Uniform Distribution, one of the simplest 

continuous distributions in all of statistics is the continuous 

uniform distribution. This distribution is characterized by a 

density function that is “flat,” and thus the probability is uniform 

in a closed interval, say [a, b]. Although applications of the 

continuous uniform distribution are not as abundant as those for 

other distributions discussed in this chapter, it is appropriate for 

the novice to begin this introduction to continuous distributions 

with the uniform distribution. 

 

2.1. The Uniform Distribution  

The density function of the continuous uniform random variable 

X on the 

Distribution interval [a, b] is 

 

  

 

It should be emphasized to the reader that the density function 

forms a rectangle with base (b— a) and constant height
1

b a
. As 

a result, the uniform distribution is often called the rectangular 

distribution. The density function for a uniform random variable 

on the interval [1, 3] is shown in the Figure 

1
,

( )

0

a x b
f x b a

elsewhere


 

 


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Probabilities are simple to calculate for the uniform distribution 

due to the simple nature of the density function. However, note 

that the application of this distribution is based on the assumption 

that the probability of falling in an interval of fixed length within 

[a, b] is constant. 

Properties 

The continuous random variable of uniform distribution for X, 

with 

1)  Mean:   E(X) = 
2

a b



      

2)  Variance:  Var (X) = 
2

2 ( )

12

b a



  

 

Example.12:   

Suppose that a large conference room for a certain company can 

be reserved for no more than 4 hours. However, the use of the 

conference room is such that both long and short conferences 

occur quite often. In fact, it can be assumed that length X of a 

conference has a uniform distribution on the interval [0, 4]. 

1) What is the probability density function? 
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2) What is the probability that any given conference lasts at least 

3 hours? 

3) Find the mean and variance. 

Solution: 

1) The appropriate density function for the uniformly distributed 

random variable X in this situation is  

 

 

 

 

2)
4

3

1
( 3) 0.25

4
P X dx    

3) 
4

2
2

     ,  
2

2 (4) 4

12 3
    

 

2.2. The Normal Distribution  

 The most important, continuous probability distribution in 

the entire field of statistics is the normal distribution. Its graph, 

called the normal curve, is the bell shaped curve: of the present 

figure, which describes approximately many phenomena that 

occur in nature, industry, and research. Physical measurements in 

areas such as meteorological experiments, rainfall studies, and 

measurements of manufactured parts are often more than 

adequately explained with a normal distribution. In addition, 

errors in scientific measurements are extremely well 

approximated by a normal distribution. 

1
, 0 4

( ) 4

0

x
f x

elsewhere


 

 


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 The normal distribution is continuous rather than discrete. 

The mean of a normal random variable may have any value, and 

the variance may have any positive value. The probability density 

function of a normal random variable with mean μ and variance 

σ
2
 is given by  

                            

2
1

21
( ) ,

2

x

f x e x





 

 
  

       

 If X is a random variable whose probability density function is 

normal with mean μ and variance σ
2
, we denote as X ~ N (μ, σ

2
).  

 The next figure presents a plot of the normal probability 

density function with mean μ and standard deviation σ. The 

normal probability density function is sometimes called the 

normal curve. Note that the normal curve is symmetric around μ. 

 

2.3. The Standard Normal Distribution 

 A normal random variable with location parameter 0 and 

scale parameter 1 is called a standard normal random variable. 

Because of the form of the normal density, it is possible to 
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determine probabilities for any normal random variable from the 

distribution function of the standard normal variable. 

Consequently, the standard normal random variable has been 

given the special symbolic destination, Z, from which the z-score 

derives. The standard normal distribution function is given the 

special symbol, ( )f z  

                                         

2

2
1

( ) ,
2

z

f z e z




      

                   

 

 Occasionally, we are required to find the value of z 

corresponding to a specified probability that falls between values 

listed in Table STANDARD NORMAL (see  convenience, we 

shall always choose: the z value corresponding to the tabular 

probability that comes closest, to the specified probability. The 

preceding two examples were solved by going first; from a value 

of x to a z value and then computing the desired area. In normal 

distribution we reverse the process and begin with a known area 



Ch.3 [Probability Distributions] 

 

  
Page 70 

 
  

or probability, find the z value, and then determine x by 

rearranging the formula:  z = (x – μ) /σ. 

 Then Z is a random variable whose probability density 

function is standard normal with mean 0 and variance 1, we 

denote as Z ~ N (0, 1).  

 

Example.13: 

 Resistances in a population of wires are normally distributed with 

mean 20mΩ and standard deviation 3mΩ. The resistance of two 

randomly chosen wires is 23mΩ and 16mΩ. Convert these 

amounts to standard units. 

Solution 

A resistance of 23mΩ is 3mΩ more than the mean of 20, and 

3mΩ is equal to one standard deviation. So 23mΩ is one standard 

deviation above the mean and is thus equivalent to one standard 

unit. A resistance of 16mΩ is 1.33 standard deviations below the 

mean, so 16mΩ is equivalent to −1.33 standard units.  

In general, we convert to standard units by subtracting the mean 

and dividing by the standard deviation. Thus, if x is an item 

sampled from a normal population with mean μ and variance σ2, 

the standard unit equivalent of x is the number z, where  

z = (x – μ) /σ 

The number z is sometimes called the “z-score” of x. The z-score 

is an item sampled from a normal population with mean 0 and 
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standard deviation 1. This normal population is called the 

standard normal population.  

 

Example.14: 

 The yield, in grams, of a dye manufacturing process is normally 

distributed with mean1500 and standard deviation 50. The yield 

of a particular run is 1568 grams. Find 1) The z-Value.  

2) The yield of a certain run has a z-score of −1.4. Find the yield 

in the original units of grams.  

Solution 

The quantity 1568 is an observation from a normal population 

with mean μ = 1500 and standard deviation σ = 50.  

1)  z = (1568 – 1500) /50 = 1.36  

2) We use the Equation z = (x – μ) /σ substituting −1.4 for z and 

solving for x. We obtain    

                            −1.4 =( x – 1500) / 50  

Solving for x yields x = 1430. The yield is 1430 grams.  

 

Example.15:  

Find the area under the normal curve to the right of z = 1.38. 

Solution 

From the z table, the area to the left of  

z = 1.38 is 0.9162. 

 Therefore the area to the right is  
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1 − 0.9162 = 0.0838  

 

 

 

 

 

Example.16: 

 Lifetimes of batteries in a certain application are normally 

distributed with mean 50 hours and standard deviation 5 hours. 

Find the probability that a randomly chosen battery lasts between 

42 and 52 hours. 

Solution 

Let X represent the lifetime of a randomly chosen battery. 

Then X is N (50, 52). The next Figure presents the probability 

density function of the N (50, 52) population.  

The shaded area represents P (42 < X < 52), the probability that a 

randomly chosen battery has a lifetime between 42 and 52 hours.  

To compute the area, we will use the z table. First we need to 

convert the quantities 42 and 52 to standard units.  

We have  z = (42 – 50)/5 = −1.60  

z = (52 – 50)/5 = 0.40 
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3. Exercises.3  

Ex.1: Let X ∼ Binomail (8, 0.25). Find  

a. P(X < 2)                     b. P(X ≥ 1)                  c. P (1 ≤ X ≤ 2)                 

d. P (2 < X < 6)               e. P(X = 0)                  f. P(X = 8)  

Ex.2: Ten percent of the items in a large lot are defective. A 

sample of four items is drawn from this lot.  

a. Find the probability that all of the sampled items are defective.  

b. Find the probability that one or less of the sampled items is 

defective.  

c. Find the probability that exactly two of the sampled items is 

defective.  

d. Find the probability that bigger than two of the sampled items 

are defective. 

Ex.3: A warehouse contains nine printing machines, four of 

which are defective. A company selects four of the machines at 

random, thinking all are in working condition.                             

1) What is the probability that less than one defective? 

2) What is the probability that all four of the machines are non-

defective? 

Ex.4:  Let X ~ Poisson (5).  

Find   a. P(X = 1)                    b. P(X = 0)                     c. P(X < 2)    

          d. P(X > 3)                   e. μ = E(X)                    f. Var (2x-1)      
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Ex.5. It is know that 2% of the circuit boards from a production 

line are defective. If a random sample of 900 circuit boards is 

taken from this production lines. Estimate                

a) The probability exactly 2 defective boards. 

b) The probability at least 2 defective boards. 

Ex.6: In a Poisson distribution, the probability of particular value  

P(X=0) = 0.7408. Find the probability of X bigger than 2.   

Ex.7: In a manufacturing process where glass products are made 

defects occur occasionally rending the piece undesirable for 

marketing. It is known that the average 0.002 produced. If we 

take a random sample of 600, what is the probability of 3 items 

possessing defects at most?   

Ex.8: A company is interested in evaluating its current inspection 

procedure on shipments of 50 identical items. The procedure is to 

take a sample of 5 and pass the shipment if no more than 2 are 

found to be defective. What proportion of 20% defective 

shipments will be accepted?  

Ex.9: A manufacturer of automobile tires reports that among a 

shipment of 5000 sent to a local distributor, 1000 are slightly 

blemished. If one purchases 10 of these tires at random from the 

distributor, what, is the probability that exactly 3 are blemished? 

Ex.10: A manufacturing company uses an acceptance scheme on 

production items before they are shipped. The plan is a two-stage 

one. Boxes of 25 are readied for shipment and a sample of 3 is 
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tested for defectives. If any defectives are found, the entire box is 

sent back for 100% screening. If no defectives are found, the 

boxes shipped. 

(a) What is the probability that a box containing 3 defectives will 

be shipped? 

(b) What is the probability that a box containing only 1 defective 

will be sent back for screening? 

Ex.11: Scores on a standardized test are approximately normally 

distributed with a mean of 460 and a standard deviation of 80.  

a. What proportion of the scores are above 550? 

b. What is the 35th percentile of the scores?  

c. If someone’s score is 600, what percentile is she on?  

d. What proportion of the scores is between 420 and 520?  

Ex.12: Weights of female cats of a certain breed are normally 

distributed with mean 4.1 kg and standard deviation 0.6 kg.  

a. What proportion of female cats has weights between 3.7 and 

4.4 kg?  

b. A certain female cat has a weight that is 0.5 standard deviations 

above the mean. What proportion of female cats is heavier than 

this one?  

c. How heavy is a female cat whose weight is on the 80th 

percentile?  

d. A female cat is chosen at random. What is the probability that 

she weighs more than 4.5 kg?  
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e. Six female cats are chosen at random. What is the probability 

that exactly one of them weighs more than 4.5 kg?  

Ex.13: The life time of a light bulb in a certain application is 

normally distributed with mean μ = 1400 hours and standard 

deviation σ = 200 hours.  

a. What is the probability that a light bulb will last more than 

1800 hours?  

b. Find the 10th percentile of the lifetimes. 

c. A particular battery lasts 1645 hours. What percentile is its 

lifetime on?  

d. What is the probability that the lifetime of a battery is between 

1350 and 1550 hours?  

Ex.14: At a certain university, math SAT scores for the entering 

freshman class averaged 650 and had a standard deviation of 100. 

The maximum possible score is 800. Is it possible that the scores 

of these freshmen are normally distributed? Explain.  

Ex.15: The strength of an aluminum alloy is normally distributed 

with mean 10 gig pascals (GPa) and standard deviation 1.4 GPa.  

a. What is the probability that a specimen of this alloy will have 

strength greater than 12 GPa?  

b. Find the first quartile of the strengths of this alloy.  

c. Find the 95th percentile of the strengths of this alloy.  
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Ex.16: The temperature recorded by a certain thermometer when 

placed in boiling water (true temperature 100◦C) is normally 

distributed with mean μ = 99.8◦C and standard deviation 0.1◦C.  

a. What is the probability that the thermometer reading is greater 

than 100◦C?  

b. What is the probability that the thermometer reading is within 

±0.05◦C of the true temperature?  

Ex.17: The quality assurance program for a certain adhesive 

formulation process involves measuring how well the adhesive 

sticks a piece of plastic to a glass surface. When the process is 

functioning correctly, the adhesive strength X is normally 

distributed with a mean of 200 N and a standard deviation of 10 

N. Each hour, you make one measurement of the adhesive 

strength. You are supposed to inform your supervisor if your 

measurement indicates that the process has strayed from its target 

distribution.  

a. Find P(X ≤ 160), under the assumption that the process is 

functioning correctly.  

b. Based on your answer to part (a), if the process is functioning 

correctly, would a strength of 160 N be unusually small? Explain.  

c. If you observed an adhesive strength of 160 N, would this be 

convincing evidence that the process was no longer functioning 

correctly? Explain.  
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d. Find P(X ≥ 203), under the assumption that the process is 

functioning correctly.  

e. Based on your answer to part (d), if the process is functioning 

correctly, would strength of 203 N be unusually large? Explain.  

f. If you observed an adhesive strength of 203 N, would this be 

convincing evidence that the process was no longer functioning 

correctly? Explain. 

g. Find P(X ≤ 195), under the assumption that the process is 

functioning correctly.  

h. Based on your answer to part (g), if the process is functioning 

correctly, would strength of 195 N be unusually small? Explain.  

i. If you observed an adhesive strength of 195 N, would this be 

convincing evidence that the process was no longer functioning 

correctly? Explain. 
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Chapter 4 

 

Linear Regression and Correlation 

 

1. Introduction 

The word correlation is used in everyday life to denote 

some form of association. We might say that we have noticed a 

correlation between stress and strain of material. However, in 

statistical terms we use correlation to denote association between 

two quantitative variables. We also assume that the association is 

linear, that one variable increases or decreases a fixed amount for 

a unit increase or decrease in the other. The other technique that is 

often used in these circumstances is regression, which involves 

estimating the best straight line to summarize the association. 

When you have completed this chapter, you will be able to: 

 

1-: Draw a scatter diagram. 

2-: Understand and interpret the terms dependent variable and 

independent variable. 

3-: Calculate and interpret the coefficient of correlation, the 

coefficient of determination, and the standard error of estimate. 
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4-: Calculate the least squares regression line and interpret the 

slope and intercept values. 

 In this chapter we will first discuss correlation analysis, 

which is used to quantify the association between two continuous 

variables (e.g., between an independent and a dependent variable 

or between two independent variables). Regression analysis is a 

related technique to assess the relationship between an outcome 

variable and one or more risk factors or confounding variables. 

The outcome variable is also called the response or dependent 

variable and the risk factors and confounders are called 

the predictors, or explanatory or independent variables. In 

regression analysis, the dependent variable is denoted "y" and the 

independent variables are denoted by "x". 

 

2. Correlation Analysis 

 

  Correlation Analysis is a group of statistical techniques 

used to measure the strength of the association between two 

variables. 

A Scatter Diagram is a chart that portrays the relationship 

between the two variables. 

The Dependent Variable is the variable being predicted or 

estimated. 
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The Independent Variable provides the basis for estimation.  It 

is the predictor variable. 

i.e The relationship between the number of pages and selling 

price of text 

 

 

 

 

 

 

 

 

 

The Coefficient of Correlation (r)  

is a measure of the strength of the relationship between two 

variables. The characteristics of the coefficient of correlation are: 

1) It requires ratio-scaled data 

2) It can range from -1 to 1 

3) Values of -1.00 or 1.00 indicate perfect and strong 

correlation. 

4) Values close to 0.0 indicate weak correlation. 

400 500 600 700 800

60

70

80

90

100

Page

Scatter Diagram of Number of Pages and Selling Price of Text
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5) Negative values indicate an inverse relationship and 

positive values indicate a direct relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The coefficient of correlation will be Calculated from the 

following formulas: 

i. Spearman’s Coefficient Correlation 

 Spearman’s r is a statistic for measuring the relationship 

between two qualitive or quantative variables. It is a 

nonparametric measure that avoids assumptions that the variables 

have a straight line relationship and can be used when one or both 

measures is measured on an ordinal scale. The difference is that  

2

2

6
1 .

( 1)

d
r

n n


 





Ch.4 [Linear Regression and Correlation] 

 

  
Page 83 

 
  

Spearman’s r refers to the ranked values rather than the 

original measurements. 

Where the n is number of order pairs and d
2
 is the difference 

between rank of x and rank of y 

Example 1: 

The following observations are selected from 8 students in course 

of statistics the observation measure the course degree and total 

GPA after the final exam 

Degree  A
+ 

D A
 ــ-

B A
+ 

B
 ــ-

B
+ 

F 

G.P. A 2.8 2.8 3.2 3.0 3.2 2.9 3.2 1.99 

 Compute the spearman's coefficient correlation.  

Solution: 

X Y R(X) R(Y) d
2 

A
+
 

D 

A
ــ-
 

B 

A
+
 

B
ــ-
 

B
+
 

F 

2.8 

2.8 

3.2 

3.0 

3.2 

2.9 

3.2 

1.99 

7.5 

2 

6 

4 

7.5 

3 

5 

1 

2.5 

2.5 

7 

5 

7 

4 

7 

1 

2.5 

0.25 

1 

1 

0.25 

1 

4 

0 

    32.5 

 

 

 

 

Strong positive correlation coefficient 

2

2

6
1 .

( 1)

6(32.5)
1 0.61

8(63)

d
r

n n

r


 



   
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Example 2: 

The data below gives the marks of 10 students in physics and 

math 

Math 20 23 8 29 14 11 11 20 17 17 

Physics 30 35 21 33 33 16 22 31 33 36 

Calculate the spearman's correlation coefficient. 

Solution:  

X Y Order(x) Order(y) d (d
2
) 

20 

23 

8 

29 

14 

11 

11 

20 

17 

17 

30 

35 

21 

33 

33 

16 

22 

31 

33 

36 

7.5 

9 

1 

10 

4 

2.5 

2.5 

7.5 

5.5 

5.5 

4 

9 

1 

7 

7 

3 

2 

5 

7 

10 

3.5 

0 

0 

3 

-3 

-0.5 

0.5 

2.5 

-1.5 

-4.5 

12.25 

0 

0 

9 

9 

0.25 

0.25 

6.25 

2.25 

20.25 

     59.5 

 

 

 

 

 

Strong positive correlation coefficient.                        

 

 

2

2

6
1 .

( 1)

6(59.5)
1 0.639

10(99)

d
r

n n

r


 



   
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ii. Pearson’s Coefficient of Correlation 

 

 There is a simple and straightforward way to measure 

correlation between two variables.  It is called the Pearson 

correlation coefficient (r).  It's longer name, the Pearson product-

moment correlation, is sometimes used. 

The formula for computing the Pearson r is as follows: 

 

 

 

b. Coefficient of Determination 

 The coefficient of determination (r
2
)

 
is the proportion of the 

total variation in the dependent variable (Y) that is explained or 

accounted for by the variation in the independent variable (X).  

 

 

 

 

 

 

   
22 2 2

( ) ( )( )

( ) ( )

n XY X Y
r

n X X n Y Y

   


          
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3. Regression Analysis 

In regression analysis, we use the independent variable (X) to 

estimate or predict the dependent variable (Y).   

o The relationship between the variables is linear. 

o Both variables must be at least interval scale. 

o The least squares criterion is used to determine the 

equation.   

That is the term (Y – Y*)
2
 is minimized. (Y is 

observed variable and Y* is estimated variable). 

 

The regression equation:  

 

 At its simplest level, linear regression is a method for 

fitting a straight line through an x-y scatter plot. Recall from other 

math courses that a straight line is described by the following 

formula: 

 

                                  Y
*
= a + bX,         

where:  

• Y* is the average predicted value of Y for any X. 

•   a is the Y-intercept.  It is the estimated Y value when X=0 

•   b is the slope of the line, or the average change in Y’ for 

each change of one unit in X 

•   The least squares principle is used to obtain a and b. 

The least squares principle is used to obtain a and b.  The 

equations to determine a and b are: 

                                          

                            
2 2

( ) ( )( )

( ) ( )

n XY X Y
b

n X X






  
 
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Y X

a Y bX b
n n

   
   

 

The standard error of estimate measures the scatter, or 

dispersion, of the observed values around the line of regression 

 

The formulas that are used to compute the standard error 

 

                              
* 2

.

( )

2
y x

Y Y
S

n






  

 

The difference *( )y y  is called a residual, and their sum is called 

the residual sum of squares or sum of squared errors (SSE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3 

A road transport company might want to asses the relationship 

between the age of a vehicle and its yearly maintenance cost and 

it might take a random sample of observation such as: 
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Age of vehicle(years) 5 3 8 2 11 7 
maintenance cost (1000 LE) 3.5 2 7.5 3 15 9 

 

1) Determine the coefficient correlation (using pearson method) 

2) Estimate the maintenance cost for vehicle with age 4 years. 

3) Compute the standard error estimation. 

Solution: 

X Y XY X
2 

Y
2 

5 3.5 17.5 25 12.25 

3 2 6 9 4 

8 7.5 60 64 56.25 

2 3 6 4 9 

11 15 165 121 225 

7 9 63 49 81 

36 40 317.5 272 387.5 

 

1) Pearson's coefficient correlation: 

 

 

 

 

 

 

Strong positive correlation coefficient 

 

   
22 2 2

( ) ( )( )

( ) ( )

n XY X Y
r

n X X n Y Y

   


          

   
22

6(317.5) (36)(40)
0.942

6(272) (36) 6 387.5 40

r


 
      
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2) Regression equation predicted the maintenance cost on 

vehicle age: 

 

Let x=vehicle age and y= maintenance cost 

 

         Y
*
= a + bX, 

 

2 2

( ) ( )( )
1.384

( ) ( )

n XY X Y
b

n X X


 



  
 

 

 

40 36
1.384( ) 1.637

6 6

Y X
a Y bX b

n n
       

   

         Y
*
= -1.637+1.384X 

 

 

At X=4     then Y=3.89~4 (thous LE)                               

 

 

3) Standard error estimation: 

* 2

.

( ) 11.045
1.662

2 6 2
y x

Y Y
S

n


  

 


          

 

 

 

 

                                                                                                                   

 

 

Y  
* 2( )Y Y  

5.283 3.179 

2.515 0.265 

79.435 3.744 

1.131 0.755 

13.587 1.997 

8.051 1.105 

Sum 11.045 
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4. Exercises 4 

 

1)  A recent article in engineering week listed the best small 

companies. We are interested in the current results of the 

company’s sales and earning with million dollars. A 

random sample of 7 companies was selected as in the 

following table.   
 

1- Compute the Pearson coefficient correlation. 

2- Estimated the Sales for company with Earning 50 m.$. 

3- Determine the standard error of estimate.  

4- Draw the scatter diagram                                                  

         

2)  The production department of National Electronics wants 

to explore the relationship between the number of 

employees who assemble and the number produced. As an 

experiment the complete set of paired observation follows 

(Lets the dependent variable is production). 

 

1- Draw the scatter diagram.  

2- Determine the Regression equation. 

3- Find the standard error of estimate as a measure of fitting the 

regression line. 

Sales( m.$) 15 13 21 17 18 61 24 

Earning (m.$) 25 15 29 31 26 81 31 

Number. of employee 2 4 1 6 5 3 

Production 

( unit/ 1 hr) 
15 25 10 38 40 30 
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4- Find the coefficient determination. 

 

3) The production department of National Electronics wants 

to explore the relationship between the numbers of 

employees (Y) who work in the produced lines (X).  As an 

experiment, the complete set of paired observation follows 

X  1
st
  3

rd
  4

th
  2

nd
  5

th
  

Y 12 10 23 17 16 

 

a) Find the correlation coefficient, showing the type of the 

correlation. 

b) Draw the scatter diagram between numbers of employees and 

the produced lines.  

 



R [REFERENCES] 

 

  
Page 92 

 
  

REFERENCES 

1) Probability & Statistics for Engineers and Scientists, By R. E. Walpole, 

R. H. Myers, S. L. Myers and K. Ye., 9
TH

 Edition. 

2) Statistics: concepts and applications, By Harry Frank and Steven C 

Althoen, Cambridge University Press, 2004. 

3) Introduction to Probability, By Charles M. Grinstead and J. Laurie Snell, 

Swarthmore College.  




