Sheet (1) - Electronics Prof. Dr/ Essam Elshafee

- 1)A sample of germanium is doped to the extent of 10^{14} donor atoms/cm³ and $2x10^{14}$ acceptor atoms/cm³. At the temperature of the sample the conductivity of pure (intrinsic) germanium is $0.02 \ (\Omega\text{-cm})^{-1}$. If the total conduction current density is $0.128A/cm^2$, find the applied electric field intensity. (μ_p =1800cm²/V.s and μ_n =1800cm²/V.s at 300°K).
- 2) What PIV rating is required for the diodes in a Full-Wave Center-Tapped Rectifier that produces an average output voltage of 60 V?
- 3) Determine the ripple factor for the filtered rectifier with a load as indicated in Figure -1. What minimum PIV rating must the diodes have? $(V\gamma = 0.7V)$

4) Determine the ripple factor for the filtered rectifier with a load as indicated in Figure -2. What minimum PIV rating must the diodes have? $(V\gamma = 0.7V)$

5) What value of filter capacitor is required to produce a 1% ripple factor for a full-wave rectifier having a load resistance of 1.5K Ω ? Assume the rectifier produces a peak output of 18V from a 60 Hz ac source.

- 6) For the voltage regulator shown in Figure, assume that V_z =40V, R=40 Ω , r_z =0, and R_L =400 Ω . Voltage V_i varies between 48 and 60V.
- (i) Specify the maximum and minimum current for the Zener diode.
- (ii) Determine the maximum power dissipated in resistance R and in the zener diode ($P_{R(\text{max})}$ and $P_{Z(\text{max})}$).

7) For the voltage regulator shown in figure.2, assume that $V_z=30V$, $V_{in}=150V$, $R=600\Omega$, $r_z=0$, and $I_{ZK}=10$ mA, $I_{ZM}=190$ mA. Determine: (i) the variation in R_L over which the load voltage is still regulated at the Zener voltage.

- (ii) the maximum power dissipated in resistance R_L and in the Zener diode ($P_{L(max)}$ and $P_{Z(max)}$)
- 8) For the circuit shown in Figure-2 I_{o1} =2 μ A, I_{o2} =1 μ A, I_{o3} =3 μ A, V_{Z1} =20V, V_{Z2} =30V, V_{Z3} =50V, r_{Z1} =10 Ω , r_{Z2} =30 Ω , r_{Z3} =20 Ω , $V_{\gamma 1}$ = $V_{\gamma 2}$ =0.6V, $V_{\gamma 3}$ = 0.5V, and R=10 $k\Omega$. Calculate the current passing through the circuit if V_{in} = -10V, V_{in} = +10V, V_{in} = -60V and V_{in} = 60V.

Sheet (2) – Electronics (1) Prof. Dr/ Essam Elshafi

- 1) The diodes shown in Figure.1 are ideal. Sketch the transfer characteristics for $0 \le V_i \le 100$ V. Indicate the state of each diode (on or off) over each region of the characteristic.
- 2) The diodes shown in Figure.2 are ideal. Sketch the transfer characteristics for $20 \le V_i \le 20$ V. Indicate the state of each diode (on or off) over each region of the characteristic.
- 3) Determine whether or not the transistor shown in Figure 3 in saturation. Assume VCE(sat.) = 0.2 V and $\beta = 150$.
- 4) The diodes shown in Figure.4 are ideal. Sketch the transfer characteristics for $20 \le V_i \le +20$ V. Indicate the state of each diode (on or off) over each region of the characteristic.
- 5) If = 45, IE =2mA and VBE =0.7V, find R in the circuit shown in figure.5

6) If $\beta = 45$ and VBE = 0.7V, find R in the amplifier circuit shown in Figure.6 for a zener current IZ =2mA.

7) If = 49 and VBE =0.7V, find R in the circuit shown in figure.7 for an collector current IC =1.96mA.

8) For each transistor in the circuit shown in Figure.8, the parameters are $\beta = 100$, and $V_{BE} = 0.7$ V. Determine the quiescent base, collector, and emitter currents in Q_1 and Q_2 , Also determine V_{CEQ1} and V_{CEQ2}

