Higher Technological Institute Chemical Engineering Department

Chapter 3

Chemical Equilibrium

Equilibrium is a state in which there are no observable changes as time goes by.

Chemical equilibrium is achieved when:

- the rates of the forward and reverse reactions are equal and
- the concentrations of the reactants and products remain constant
 Chemical equilibrium

Physical equilibrium

 $H_2O(l) \implies H_2O(g)$

Chemical equilibrium

 $N_2O_4(g) \implies 2NO_2(g)$

- 1. Reaction begins.
 - No products yet formed.
 - High rate of collisions between A & B.
 - Rate of forward reaction HIGH.

- 2 & 3 Products formed
 - Collisions between reactants decrease.
 - Rate of forward reaction DECREASES
 - Reverse reaction begins.

- 4. Rate of forward reaction EQUAL to rate of reverse reaction.
 - <u>Dynamic</u> <u>equilibrium</u> established.
 - Concentrations constant.

The Equilibrium Constant, K_c

Generally:

The Equilibrium Constant for Gases $\kappa_{a} = \frac{[C]^{c}[D]^{a}}{[A]^{a}[B]^{b}}$ $\kappa_{a} = \frac{[C]^{c}[D]^{a}}{[A]^{a}[B]^{b}}$

Because pressure is proportional to concentration for gases in a closed system, the equilibrium expression can also be written

$$K_{p} = \frac{(P_{\rm C})^{c} (P_{\rm D})^{d}}{(P_{\rm A})^{a} (P_{\rm B})^{b}}$$

where K_p = equilibrium constant for gases, and P_x = partial pressure of each gas.

 $N_2O_4(g) \longrightarrow 2NO_2(g)$

$N_2O_4(g) \longrightarrow 2NO_2(g)$

$$K_p = K_c(RT) \Delta r$$

 $\Delta n = moles of gaseous products – moles of gaseous reactants$

Homogeneous Equilibrium

has everything present in the same phase. The usual examples include reactions where everything is a gas, or everything is present in the same solution.

The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $COCI_2$ (g) at 74°C are [CO] = 0.012 M, $[CI_2] = 0.054$ M, and $[COCI_2] = 0.14$ M. Calculate the equilibrium constants K_c and K_p.

$$CO (g) + Cl_2 (g) \longrightarrow COCl_2 (g)$$

$$Kc = \frac{[COCl_2]}{[CO][Cl_2]} \qquad Kc = \frac{0.14}{0.012 \times 0.054} = 220$$

$$K_p = K_c (RT) \Delta n$$

$$\Delta n = 1 - 2 = -1 \qquad R = 0.0821 \qquad T = 273 + 74 = 347 \text{ K}$$

$$K_p = 220 \times (0.0821 \times 347)^{-1} = 7.7$$

The equilibrium constant K_p for the reaction

 $2NO_2(g)$ $2NO(g) + O_2(g)$

is 158 at 1000K. What is the equilibrium pressure of O_2 if the P_{NO2}

= 0.400 atm and $P_{\rm NO}$ = 0.270 atm?

 $P_{O_2} = 158 \text{ x} (0.400)^2 / (0.270)^2 = 347 \text{ atm}$

Heterogenous equilibrium

has things present in more than one phase. The usual examples include reactions involving solids and gases, or solids and liquids.

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

$$\mathcal{K}_{c}^{\iota} = \frac{[CaO][CO_{2}]}{[CaCO_{3}]}$$

 $K_c = [CO_2]$

 $[CaCO_3] = constant$ [CaO] = constant

$$K_p = P_{CO_2}$$

The concentration of <u>solids</u> and <u>pure liquids</u> are not included in the expression for the equilibrium constant. Consider the following equilibrium at 295 K:

 $NH_4HS(s) \longrightarrow NH_3(g) + H_2S(g)$

The partial pressure of each gas is 0.265 atm. Calculate K_p and K_c for the reaction?

$$K_p = P_{\rm NH_3} P_{\rm H_2S} = 0.265 \times 0.265 = 0.0702$$

 $K_{p} = K_{c}(RT) \Delta n$ $K_{c} = K_{p}(RT) - \Delta n$ $\Delta n = 2 - 0 = 2 \qquad T = 295 \text{ K}$ $K_{c} = 0.0702 \times (0.0821 \times 295)^{-2} = 1.20 \times 10^{-4}$

When the equation for a **reversible reaction** is written in the **opposite direction**, the equilibrium constant becomes the **reciprocal of the original equilibrium constant**

So for a general

 $A \longrightarrow B \qquad K_1$ $n^* (A \longrightarrow B) \qquad K_2 = (K_1)^n$

 $n = -ve \quad Or + ve$

n = whole number Or fraction

Example

 $Cl_2(g) + PCl_3(g) \implies PCl_5(g) \qquad K_1 = 8.0 \times 10^{16}$

$$K_1 = \frac{\begin{bmatrix} PCl_5 \end{bmatrix}}{\begin{bmatrix} PCl_3 \end{bmatrix} \begin{bmatrix} Cl_2 \end{bmatrix}}$$

 $PCl_5(g) \implies Cl_2(g) + PCl_3(g) \quad K_2 = ?$

$$K_{2} = \frac{\left[PCl_{3}\right]\left[Cl_{2}\right]}{\left[PCl_{5}\right]} = \frac{1}{K_{1}} = \frac{1}{8.0 \times 10^{16}}$$

$$\frac{1}{2}PCl_{5}(g) \implies \frac{1}{2}Cl_{2}(g) + \frac{1}{2}PCl_{3}(g) \quad K_{3} = ?$$

$$K_{3} = \frac{\left[PCl_{5}\right]^{\frac{1}{2}}}{\left[PCl_{3}\right]^{\frac{1}{2}}\left[Cl_{2}\right]^{\frac{1}{2}}} = \left(\frac{1}{K_{1}}\right)^{\frac{1}{2}} = \left(\frac{1}{8.0 \times 10^{16}}\right)^{\frac{1}{2}}$$

Notes

- 1. The concentrations of pure solids, pure liquid do not appear in the equilibrium constant expressions.
- Solution concentration is by M, gase pressure by atm, Universal gas constant used by 0.082 atm.l/mole .K
- 3. The equilibrium constant is a dimensionless quantity.

Typical Problem: Mix 1.0 mol CO & 3.0 moles H_2 in a 1.0 L container. At equilibrium an analysis reveals that you have 0.40 mol H_2O . What is <u>M</u> of each at equilibrium? Let $X = \underline{M}$ of CO that reacts at equilibria.

 $1CO + 3H_2 \rightleftharpoons 1CH_4 + 1H_2O$ Starting <u>M</u>: 1.0 3.0 0.0 0.0
at Equilibria 1.0-X 3.0-3X X X

We know that X = 0.40; therefore, at equilibria:

<u>M</u> CO	=	1.0-X	=	1.0-0.4 =	0.6
$\underline{\mathbf{M}} \mathbf{H}_2$	=	3.0-3X	=	3.0 - 1.2 =	1.8
$\underline{\mathbf{M}} \mathbf{H}_2 \mathbf{O}$	=	Χ	=		0.40
M CH ₄	=	X	=		0.40

Le Châtelier's Principle "The Equilibrium Law"

Whenever a system in equilibrium is disturbed the system will adjust itself in such a way that the effect of the change will be reduced or moderated.

Le Châtelier's Principle

Changes in Concentration

Le Châtelier's Principle

Changes in Concentration continued

Change

Shifts the Equilibrium

Increase concentration of product(s)
Decrease concentration of product(s)
Increase concentration of reactant(s)
Decrease concentration of reactant(s)

Adding or removing a product or reactant

The equilibrium shifts to remove reactants or products that have been added

Adding or removing a product or reactant

The equilibrium shifts to replace reactants or products that have been removed

Changing the volume

Reducing the volume of a gaseous reaction causes the reaction to decreases the number of moles of gas

Moderatepressurechanges have a negligibleeffectonreactionsinvolvingonlyliquidsor

Shifts to left Increases moles of gas Shifts to right decreases moles of gas

Le Châtelier's Principle

Changes in Volume and Pressure

A (g) + B (g) 🔁 C (g)

Change

Shifts the Equilibrium

Increase pressure Decrease pressure Side with fewest moles of gas − Side with most moles of gas ← **Example** For each of the following equilibrium systems, predict the direction of net reaction in each case as a result of **increasing the pressure** on the system at constant temperature.

(a)
$$2PbS(s) + 3O_2(g) \leftrightarrow 2PbO(s) + 2SO_2(g)$$

 $\Delta n = 2 - 3 = -1 < 0$ side of fewest gaseous moles is the product **THUS: the equilibrium will shift** to the right

(b)
$$PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$$

$$\Delta n = 2 - 1 = 1 > 0$$

side of fewest gaseous moles is the reactant

THUS: the equilibrium will shift to the left

(c) $H_2(g) + CO_2(g) \leftrightarrow H_2O(g) + CO(g)$

$$\Delta n = 2 - 2 = 0$$

THUS: the change in pressure has NO effect on the equilibrium

Changing the Temperature

- Increasing the temperature shifts a reaction in a direction that produces an endothermic (heat-absorbing) change
- Decreasing the temperature shifts a reaction in a direction that produces an exothermic (heat-releasing) change

Le Châtelier's Principle

Changes in Temperature

 $N_2(g) + 3H_2(g) \implies 2NH_3(g) \Delta H = -92.4 \text{kJ}$

Since ΔH is negative, the reaction to the right evolves heat

$N_2(g) + 3H_2(g) \implies 2NH_3(g) + 92.4$ kJ

The forward reaction is *exothermic*

The reverse reaction is *endothermic*

If heat is added, the position of the equilibrium shifts to the left

Le Châtelier's Principle

Changes in Temperature

$$CO_2(g) + H_2(g) \Longrightarrow CO(g) + H_2O(g)$$

$$\Delta H = +41kJ$$

$CO_2(g) + H_2(g) + 41kJ \rightleftharpoons CO(g) + H_2O(g)$

If heat is added the position of the equilibrium shifts to the right

The numerical value of the equilibrium constant changes when the temperature is changed Example: If the reaction is endothermic and the temperature is raised, the amount of CO present will:

 $CO_2 + H_2 \leftrightarrow CO + H_2O$

- a. increase.
- b. decrease.
- c. remain unchanged.
- d. disappear.

 does not affect the position and composition of the equilibrium of a reaction, because both the forward and backward reactions are sped up by the same factor

also catalyst lowers Ea(activation energy) for both forward and reverse reactions Example: If a catalyst is added to the equilibrium, the amount of CO present will:

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$

- a. increase.
- b. decrease.
- c. remain unchanged.
- d. disappear.

Le Châtelier's Principle

Change	Shift Equilibrium	Change Equilibrium Constant
Concentratio	n YES	NO
Pressure	YES	NO
Volume	YES	NO
Temperature	YES	YES
Catalyst	NO	NO

5. Le <u>Chatelier's Principle</u>: When a system at equilibrium is altered, then equilibrium will shift to relieve the alteration.
 Examples:

1) HF is a weak acid. What will happen when one adds either a second source of H⁺ from a strong acid like <u>HCl</u> or extra F⁻ from KF?

 $\mathbf{HF} \longleftrightarrow \mathbf{H}^+ + \mathbf{F}^-$

Extra H⁺ or F⁻ will shift equilibria to left

2) What will happen if one adds Ag^+ to HF equilibria? (AgF is insoluble). $HF \iff H^+ + F^-$

Will shift to right to replace F^- which is taken away through formation of $\underline{AgF}_{(s)}$.

$1\mathrm{CO}_{\mathrm{g}} + 3\mathrm{H}_{2\,\mathrm{g}} \rightleftharpoons 1\mathrm{CH}_{4\,\mathrm{g}} + 1\mathrm{H}_{2}\mathrm{O}_{\mathrm{g}}$

3):

- Equilibrium will shift to right to relieve (to lower) the pressure.

4): Heat + $NH_4F \iff NH_4^+ + F^-$ (endothermic) How will an increase in temperature influence the above reaction? Note: Treat heat as a reactant for endothermic rxn.

- The equilibrium will shift to remove the excess heat. It will force this reaction to the right.