Sheet-1-

- **1)** In Figure 1, the silicon transistor has $h_{fe} = 90$, $h_{ie} = 1 \text{k}\Omega$, $h_{oe} = 0$ and $h_{re} = 0$. Find:
 - a) The equivalent circuit.

- b) The current gain $A_i = i_o/i_i$
- c) The voltage gain $A_V = v_o/v_i$.
- d)The input impedance Z_{in} seen by the signal voltage source V_{in} .
- e)The output impedance Z_{out} seen by the load R_L

- 2) For the amplifier circuit shown in Fig.2, the transistor has the following small signal parameters $h_{fe} = 90$, $h_{ie} = 1 \text{k}\Omega$, $h_{oe} = 10^{-2} \text{m}$ -mho and $h_{re} = 10^{-4}$. Find:
 - a) The equivalent circuit.

- b) The current gain $A_i = i_o/i_i$
- c) The voltage gain $A_V = v_o/v_i$.
- d)The input impedance Z_{in} seen by the signal voltage source V_{in}
- e)The output impedance Z_{out} seen by the load R_L

- **3.** In Fig.3, the silicon transistor has $h_{fe} = 100$, $h_{ie} = 1 \text{K}\Omega$, and $h_{oe} = h_{re} = 0$. Find:
 - a) The equivalent circuit.
 - b) The voltage gain $A_V = v_o/v_i$.
 - c) The input impedance Z_{in} seen by the signal voltage source V_{in} .
 - d) The output impedance Z_{out} seen by the load resistance R_{L}

- 4. In Fig.4, the silicon transistor has $h_{fe} = 100$, $h_{ie} = 1 \text{K}\Omega$, and $h_{oe} = h_{re} = 0$. Find:
 - a) The equivalent circuit.
 - b) The voltage gain $A_V = v_o/v_i$.
 - c) The input impedance Z_{in} seen by the signal voltage source V_{in} .
 - d) The output impedance Z_{out} seen by the load resistance R_L

 $V_{CC} = 12V$

- 5) In Figure.5, the silicon transistor has $h_{fe} = 90$, $h_{ie} = 1 \text{k}\Omega$, $h_{oe} = 10^{-2} \text{m-mho}$ and $h_{re} = 10^{-4}$. Find:
 - a) The equivalent circuit.
 - b) The current gain $A_i = i_o/i_i$

- c) The voltage gain $A_V = v_o/v_i$.
- d)The input impedance Z_{in} seen by the signal voltage source V_{in} .
- e) The output impedance Z_{out} seen by the input impedance Z_{in} of Q_2 .

- 6. For the multistage amplifier in Figure.6, the silicon transistors have $h_{fe} = 90$, $h_{ie} = 1 \text{k}\Omega$, and $h_{oe} = h_{re} = 0$. Find:
 - a) ac equivalent circuit
- b) overall current gain
- c) overall voltage gain
- d)The input impedance Z_{in} seen by the signal voltage source V_{in} .
- e) The output impedance Z_{out} seen by the load resistance R_L .

Sheet-2-

Design & Construction of Equipment Components

1- If a 50 mV rms input signal is applied to the amplifier in Figure 2-1, what is the peak-to-peak output voltage? $g_m = 5000 \text{ mA/V}$, $r_{ds} = 50 \text{ k}\Omega$.

Figure 2-1

- 2- If a load 1500 Ω is ac coupled to the output in Figure 2-1, what is the resulting output voltage (rms) when a 50 mV rms input is applied? $g_m = 5000$ mA/V, $r_{ds} = 50$ k Ω .
- 3-Determine the voltage gain of each common-source amplifier in Figure 2-2. r_{ds} = 100 k Ω

4- Draw the dc and ac equivalent circuits for the amplifier in Figure 2-3.

Figure 2-3

- 5- Find the gain of each amplifier in Figure 2-4.
- **6-**Determine the voltage gain of each amplifier in Figure 2-4 when the capacitively coupled load is changed to $10 \text{ k}\Omega$, r_{ds} = $50 \text{ k}\Omega$.

7- Determine the voltage gain and input resistance of the common-gate amplifier in Figure 2-5.(r_{ds} = 50 k Ω)

Figure 2-5

Sheet-3-

Design & Construction of Equipment Components

1) Choose the correct answer

, <u> </u>		
1. A thyristor has		
(a) two pn junctions	(b) three <i>pn</i> junctions	
(c) four pn junctions	(d) only two terminals	
(4) 22 32 74 73 22 22	(4) ,	
2. Common types of thyristors include		
(a) BJTs and SCRs	(b) UJTs and PUTs	
(c) FETs and triacs	(d) diacs and triacs	
	1.	
3. A 4-layer diode turns on when the anode-to-cathode	<u> </u>	
(a) 0.7 V	(b) the gate voltage	
(c) the forward-breakover voltage	(d) the forward-blocking voltage	
5. An SCR differs from the 4-layer diode because		
(a) it has a gate terminal	(b) it is not a thyristor	
(c) it does not have four layers	(d) it cannot be turned on and off	
(c) it does not have four layers	(a) it cannot be turned on and on	
6. An SCR can be turned off by		
(a) forced commutation	(b) a negative pulse on the gate	
(c) anode current interruption	(d) answers (a), (b), and (c)	
1		
7-The silicon-controlled switch (SCS) is similar in con	nstruction to the	
(a) triac.	(b) diac.	
(c) SCR.	(d) 4-layer diode	
0 V 1	- 1 · f · · · · · · · · · · · · · · · · ·	
8. You need a very <i>efficient</i> thyristor to control the speuse would be	eed of an AC fan motor. A good device to	
	(b) a DLIT	
(a) 4-layer diode.	(b) a PUT. (d) a BJT	
(c) triac.	(u) a b J1	
9. In the forward-blocking region, the SCR is		
(a) reverse-biased	(b) in the <i>off</i> state	
(c) in the on state	(d) at the point of breakdown	
(c) in the on state	(a) at the point of oreakdown	
10. The specified value of holding current for an SCR means that		
(a) the device will turn on when the anode current exceeds this value		
(b) the device will turn off when the anode current falls below this value		

(c) the device may be damaged if the anode current exceeds this value (d) the gate current must equal or exceed this value to turn the device on

4 4	771	1.	•
11.	The	diac	15

(a) a thyristor

- (b) a bilateral, two-terminal device
- (c) like two parallel 4-layer diodes in reverse directions
- (d) answers (a), (b), and (c)

12. The triac is

- (a) like a bidirectional SCR
- (c) not a thyristor

- (b) a four-terminal device
- (d) answers (a) and (b)

13. The SCS differs from the SCR because

- (a) it does not have a gate terminal
- **(b)** its holding current is less
- (c) it can handle much higher currents
- (d) it has two gate terminals

14. The SCS can be turned on by

- (a) an anode voltage that exceeds forward-breakover voltage
- (b) a positive pulse on the cathode gate
- (c) a negative pulse on the anode gate
- (d) either (b) or (c)
- 15. The SCS can be turned off by
 - (a) a negative pulse on the cathode gate and a positive pulse on the anode gate
 - (b) reducing the anode current to below the holding value
 - (c) answers (a) and (b)
 - (d) a positive pulse on the cathode gate and a negative pulse on the anode gate
- **16.** Which of the following is *not* a characteristic of the UJT?
 - (a) intrinsic standoff ratio

(b) negative resistance

(c) peak-point voltage

(d) bilateral conduction

17. The PUT is

- (a) much like the UJT
- (b) not a thyristor
- (c) triggered on and off by the gate-to-anode voltage
- (d) not a four-layer device
- 2) In a certain UJT, $r'_{B1} = 2.5 \text{ K}\Omega$ and $r'_{B2} = 4 \text{ K}\Omega$. What is the intrinsic standoff ratio?
- 3) Determine the peak-point voltage for the UJT in Problem 2 if $V_{BB} = 15V$.
- 4) The intrinsic stand-off ratio for a UJT is determined to be 0.6. If the inter-base resistance is $10 \text{ k}\Omega$, what are the values of R_{B1} and R_{B2} ?
- 5) A unijunction transistor has 10 V between the bases. If the intrinsic stand-off ratio is 0.65, find the value of stand-off voltage. What will be the peak-point voltage if the forward voltage drop in the pn junction is 0.7 V?

6) Determine a value of R_I in Figure 3.1 that will ensure proper turn-on and turn-off for the following values: $\eta = 0.33$, $V_V = 0.8$ V, $I_V = 15$ mA, $I_P = 35$ μ A, and $V_P = 18$ V.

Figure 3.1

- 7) For the relaxation oscillator shown in Figure 3.2 . The parameters of the UJT are $R_{BB}=5~k\Omega$ and $~\eta=0.6$.
 - (i) Determine R_{B1} and R_{B2} at $I_E = 0$.
 - (ii) Calculate the voltage V_P necessary to turn on the UJT.
 - (iii) Determine the frequency of oscillations if, $V_V = 0.8 \text{ V}$, $I_V = 12 \text{ mA}$, $I_P = 30 \text{ }\mu\text{A}$,

Figure 3.2

Sheet-4-

Design & Construction of Equipment Components

1) Choose the correct answer

(a) Class A	(b) Class AB	(c) Class B	(d) Class C		
2. A certain class 100 mW. The	± .	vers 5 W to a load w	ith an input signal power of		
(a) 100	(b) 50	(c) 250	(d) 5		
	nt a class A power ampleting of the power supple bias resistors	y (b) quies	a load depends on the scent current of the heat sink		
4. A certain class output is	A power amplifier has	$V_{\text{CEQ}} = 12 \text{ V} \text{ and } I_{\text{CQ}}$	= 1 A. The maximum signal power		
(a) 6 W	(b) 12 W	(c) 1 W	(d) 0.707 W		
(a) input signal(c) power from	power the dc power supply	(b) power dissip(d) none of these	er delivered to the load to the ated in the last stage answers		
(a) 25%	efficiency of a class A p (b) 50%	(c) 79%	(d) 98%		
(a) into cutoff	in a class B amplifier as	re biased (b) in sa (d) right			
8. Crossover distortion is a problem for(a) class A amplifiers(c) class B amplifiers		. ,	(b) class AB amplifiers(d) all of these amplifiers		
(a) two npn tran	push-pull amplifier with nsistors ary symmetry transitors	(b) two <i>p</i>	pling uses onp transistors e of these		
10. The maximum	n efficiency of a class B		is (d) 98%		

- 11. The maximum efficiency of a class AB amplifier is
 - (a) higher than a class B

(b) the same as a class B

(c) about the same as a class A

- (d) slightly less than a class B
- 12. The power dissipation of a class C amplifier is normally
 - (a) very low
- **(b)** very high
- (c) the same as a class B
- (d) the same as a class A

- 13. The efficiency of a class C amplifier is
 - (a) less than class A
 - (c) less than class AB

- (b) less than class B
- (d) greater than classes A, B, or AB
- 2) What is the transistor power dissipation and efficiency of Figure 4.1 if $V_E = 3V$, $h_{fe} = 50$ and $h_{ie} = 1K\Omega$

3) Calculate maximum ac output power in the class-A amplifier shown in fig. (Assume $V_{BE} = 0$)

