

Control Course

REFERENCE BOOK: Discrete Time Control Systems BY katsuhiko ogata

CHAPTER(1) Introduction To Discrete-time
Control Systems

What is a System?

System: Block box that takes input signal(s) and converts to output signal(s).

Continuous-Time System:

Input System Output

What is a Control System

- **■** A Process that needs to be controlled:
 - To achieve a desired output
 - By regulating inputs
- A Controller: a mechanism, circuit or algorithm
 - Provides required input
 - For a desired output

Model of Control System Desired System Performance Control Noise Signal Capture Actuators Mechanical Sensors Disturbances System Environment Eng. Manar Fathy

Closed Loop Control System

Closed-loop control takes account of actual output and compares this to desired output

Introduction Digital Control System

- A rapid increase in the use of digital controllers in control systems.
 - Intelligent motion in industrial robots
 - Optimization of fuel economy in automobiles
 - Refinements in the operation of appliances and machines
 - Decision-making capability and flexibility in the control program major advantages.
- The current trend toward digital rather than analog:
 - Due to the availability of low-cost digital computers and the advantages found in working with digital signals.

Introduction Stypes

Systems types

- A *linear* system
 - one which the principle of superposition applies
 - may be described by linear differential or linear difference equations
- A time-invariant
 - The coefficients in the differential equation or difference equation do not vary with time (i.e., one in which the properties of the system do not change with time)
- Discrete-time control systems and continuous-time control systems
 - Continuous-time control systems:
 - Signals are continuous in time
 - Described by differential equations
 - Discrete-time control systems:
 - One or more variables can change only at discrete instances of time
 - The interval between two discrete instants is taken to be sufficiently short.

Mathematical comparison between analog and digital time control systems

System	Analytical model		
- Control of the Cont	Time domain	Frequency domain	
Continuous-time systems	Differential equations or state- space equations	Laplace transfer function (s-transfer function)	s-plane analysis and design techniques (Routh-Hurwitz
" Strait dilly		Lech. L	stability criterion, root locus techniques, Bode plots, etc.)
Discrete-time systems	Difference equations or discrete-time state-space equations	Impulse transform function (z-transfer function)	z-plane analysis and design techniques (Jury stability test, modified root locus techniques, etc.)

Introduction

- Types of signals
 - Quantization: the process of representing a variable by a set of distinct values.
 - A discrete-time signal is a signal defined only at discrete instants of time.
 - A digital signal is a discrete-time signal with quantized amplitude and can be represented by a sequence of numbers.
 - The use of digital controller requires quantization of signals both in amplitude and in time.

x(t)

(b)

Introduction

■ Sampling and Quantization

Introduction

Sampling processes

- The sampling of a continuous-time signal replaces the original continuous-time signal by a sequence of values at discrete time points.
- The sampling process is usually followed by a quantization process.
- It is important to note that occasionally the sampling operation is entirely fictitious and has been introduced to simplify the analysis of control systems.
- Many digital control systems are based on continuous-time design techniques.
 - A thorough knowledge of them is highly valuable in designing discrete-time control systems.

■ Sample-and-Hold (S/H)

- A circuit that receives an analog input signal and holds this signal at a constant value for a specified period.
- Analog-to-Digital Converter (A/D)
 - A device that converts an analog signal into a digital signal, usually a numerically coded signal.
 - Such a converter is need as an interface between an analog component and a digital component.
 - A S/H is often a integral part of a commercially available A/D converter.
 - The approximation process by the limited number of bits is called quantization.
- Digital-to-Analog Converter (D/A)
 - A device that converts a digital signal into an analog signal.
 - A converter is needed as an interface between a digital component and an analog component.

■ Plant or Process

- Any physical object to be controlled.
- The most difficult part in the design of control systems may lie in the accurate modeling of a physical plant or process.
 - In designing a digital controller, it is necessary to recognize the fact that the mathematical model of a plant or process in many cases is only an approximation of the physical one.

Transducer

- A device that converts an input signal into an output signal of another form.
 - Ex: converting a pressure signal into a voltage output

Types of sampling operations

- Periodic sampling
 - The sampling instants are equally spaced (t_k) .
 - The most conventional type of sampling operation.
- Multiple-order sampling
 - The pattern of the t_k 's is repeated periodically.
- Multiple-rate sampling
 - A digital control system may have different sampling periods in different feedback paths or may have multiple sampling rates.
 - To sample slowly in a loop involving a large time constant, while in a loop involving only small-time constants the sampling rate must be fast.
- Random sampling
 - The sampling instants are random, or t_k is a random variable.

Quantization and Quanization Error

Quantizing

- The process of representing a continuous or analog signal by a finite number of discrete states.
- The quantization level Q is defined as the range between two adjacent decision points:

Quantization Error

$$Q = \frac{FSR}{2^n}$$

FSR:full-scale range

- A/D conversion results in a finite resolution.
- Varies between 0 and $\pm \frac{1}{2}Q$.

Quantization and Quanization Error

Quantization Error (cont.)

$$e(t) = x(t) - y(t)$$
$$0 \le |e(t)| \le \frac{1}{2}Q$$

$$0 \le |e(t)| \le \frac{1}{2}Q$$

For a small quantization level Q, the nature of the quantization error is like that of random noise.

$$\sigma^{2} = E[e(t) - \bar{e}(t)]^{2} = \frac{1}{Q} \int_{-\frac{Q}{2}}^{\frac{Q}{2}} \xi^{2} d\xi = \frac{Q^{2}}{2}$$

- Operations involved in the signal conversions
 - Multiplexing and demultiplexing
 - Sample and hold
 - Analog-to-digital conversion (quantizing and encoding)
 - Digital-to-analog conversion (decoding)

Analog multiplexer

- A device that performs the function of timesharing an A/D converter among many analog channels.
- At a given instant of time, only one switch is in the "on" position.
- During the connection time the S/H samples the signal voltage and holds its value, while the ADC converts the analog value into digital data (binary numbers).

To sampler Sequencer

Demultiplexer

A device separates the composite output digital data from the digital controller into the original channels.

Sample-and-Hold Circuits

- A sampler converts an analog signal into a train of amplitude-modulated pulses.
- The hold circuit holds the value of the sampled pulse signal over a specified period.

Analog input

Sample-and-hold command

- Sample-and-Hold Circuits (cont.)
 - Two modes of operation:
 - The tracking mode when the switch is closed, the charge on the capacitor in the circuit tracks the input voltage.
 - ➤ Hold mode when the switch is open, the operating mode is the hold mode, and the capacitor voltages holds constant for a specified time of period.

- Types of ADCs
 - Successive-approximation type
 - Integrating type
 - Counter type
 - Parallel type

■ Errors in ADCs

- Digital-to-Analog Converters
 - DAC using weighted registers
 - DAC using an R-2R ladder circuits

- Digital-to-Analog Converters (cont.)
 - DAC using an R-2R ladder circuits

- Reconstructing the Input Signal by Hold Circuits
 - The purpose of the hold operation is to fill the spaces between sampling periods, and this roughly reconstruct the original analog input signal.
 - Zero-order hold

- Reconstructing the Input Signal by Hold Circuits (cont.)
 - > First-order hold

Polygonal hold

Concluding Comments

- Digital controllers and Analog controllers
 - Digital controllers
 - operate only on numbers.
 - are extremely versatile.
 - Operations being performed can be changed by simply issuing a new program.
 - Digital components are rugged in construction, highly reliable, and often compact and lightweight.
- Digital control of processes
 - It is possible to consider all process variables, and thereby to accomplish optimal control of industrial processes.
 - Flexibility: ease of changing control schemes by reprogramming.

CHAPTER(2)

The Z-Transform 33 Eng. Manar Fathy

Z - Transform Introduction

- The Z-transform plays the same role in the analysis of discrete-time signals and LTI systems as the Laplace transform does in the continuous-time signals and LTI systems.
- It offers the techniques for digital filter design and frequency analysis of digital signals.

Definition of z-transform:

The z-transform of the discrete-time x[n] is given by:

$$x[n]$$
 $X(z)$
Eng. Manar Fathy

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] \cdot z^{-n}$$

Where z is a complex variable

Z - Transform Introduction

Z is a complex variable:

$$z = re^{j\omega}$$

= $r\cos\omega + jr\sin\omega$

$$z^n = r^n e^{j\omega n}$$
 $= r^n \cos \omega n + jr^n \sin \omega n$
real part imaginary part

rate of growth is $\rightarrow r$ frequency is $\rightarrow \omega$

Z - Transform Introduction

For a *causal* sequence:

$$x(n) = 0 for n < 0$$

$$X(z) = Z(x(n)) = \sum_{n=0}^{\infty} x(n)z^{-n}$$

= $x(0)z^{-0} + x(1)z^{-1} + x(2)z^{-2} + \cdots$

Some simple pairs:

Z-transform of the Unit impulse

Let $x(kT) = \delta(kT)$

Let
$$x(kT) = \delta(kT)$$

$$\delta(kT) = \begin{cases} 1 & \text{for } k = 0 \\ 0 & \text{otherwise} \end{cases}$$
 Then

Then

$$X(z) = \sum_{k=0}^{\infty} x[kT] z^{-k} = \sum_{k=0}^{\infty} \delta(kT) z^{-k} = 1$$

Z-transform of the Shifted Unit impulse

Let $x(kT) = \delta(kT-qT)$

et
$$x(kT) = \delta(kT-qT)$$

$$\delta(kT-qT) = \begin{cases} 1 & \text{for } k = q \\ 0 & \text{otherwise} \end{cases}$$
hen

Then

$$\mathcal{S}(kT-qT) = \begin{cases} 1 & \text{for } k=q \\ 0 & \text{otherwise} \end{cases}$$
 en
$$X(z) = \sum_{k=0}^{\infty} x(kT) \ z^{-k} = \sum_{k=0}^{\infty} \delta(kT-qT) \ z^{-k} = z^{-q}$$

Z-transform of the Unit-Step Function (7) = 11(1-m)

Let
$$x(kT) = u(kT)$$

$$u(kT) = \begin{cases} 1 & \text{for } k \ge 0 \\ 0 & \text{for } k < 0 \end{cases}$$
Then
$$V(z) = \sum_{k=0}^{\infty} v(kT) z^{-k} - \sum_{k=0}^{\infty} v(kT) z^{-k} - \sum_{k=0}^{\infty} z^{-$$

$$X(z) = \sum_{k=0}^{\infty} x(kT) z^{-k} = \sum_{k=0}^{\infty} u(kT) z^{-k} = \sum_{k=0}^{\infty} z^{-k} = \sum_{k=0}^{\infty} z^{-k} = \frac{z}{1-z^{-1}} = \frac{z}{z-1}$$

Z-transform of the Sample Exponential

Let $x(kT) = a^k u(kT)$

$$a^{k} u(kT) = \begin{cases} a^{k} & \text{for } k \ge 0 \end{cases}$$

$$a^{k} u(kT) = \begin{cases} a^{k} & \text{for } k \ge 0 \end{cases}$$

$$0 & \text{for } k < 0$$
en

Then

$$X(z) = \sum_{k=0}^{\infty} x(kT) z^{-k} = \sum_{k=0}^{\infty} a^k u(kT) z^{-k} = \sum_{k=0}^{\infty} a^k z^{-k}$$

$$X(z) = \sum_{k=0}^{\infty} (az^{-1})^k = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

$$X(z) = \sum_{k=0}^{\infty} (az^{-1})^k = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

Z-transform of the Sinusoids

Let
$$x(kT) = (\cos \Omega kT) u(kT)$$
 $\cos(\Omega n) u(n) = \begin{cases} \cos(\Omega kT) & \text{for } k \ge 0 \\ 0 & \text{for } k < 0 \end{cases}$

$$\because \cos(\Omega kT) = \frac{e^{j\Omega kT} + e^{-j\Omega kT}}{2}$$

Then
$$Z\{\cos(\Omega kT)u(k)\}=\frac{1}{2}Z\{e^{j\Omega kT}u(kT)+e^{-j\Omega kT}u(kT)\}$$

$$Z\{\cos(\Omega kT)u(kT)\} = \frac{1}{2} \left[\frac{z}{z - e^{j\Omega T}} + \frac{z}{z - e^{-j\Omega T}} \right]$$

$$Z\{\cos(\Omega kT)u(kT)\} = \frac{1-z^{-1}\cos(\Omega T)}{1-2z^{-1}\cos(\Omega T) + z^{-2}} = \frac{z^2 - z\cos(\Omega T)}{z^2 - 2z\cos(\Omega T) + 1}$$

Similarly it can be shown:

$$Z\{\sin{(\Omega kT)}u(kT)\} = \frac{z^{-1}\sin{(\Omega T)}}{1 - 2z^{-1}\cos{(\Omega T)} + z^{-2}} = \frac{z\sin{(\Omega T)}}{z^2 - 2z\cos{(\Omega T)} + 1}$$

Z-Transform Table

	Signal, $\mathbf{x}(kT)$	Z-Transform, X(z)	Z-Transform, $X(z)$	ROC	
1	$\delta(kT)$	1 ~C.	1	all Z	
2	$\delta(kT-q)$	z - q	\mathbf{z}^{-q}	z ≠ 0	
3	u(kT)	$\frac{1}{1-z^{-1}}$	$\sqrt{\frac{z}{z-1}}$	z > 1	
4	a ^k u(kT)	$\frac{1}{1-az^{-1}}$	$\frac{\mathbf{z}}{\mathbf{z} - \mathbf{a}}$	$ \mathbf{z} > \mathbf{a} $	
5	<i>k</i> u(kT)	$\frac{1}{(1-z^{-1})^2}$	$\frac{z}{(z-1)^2}$	z > 1	
6	k ak u(kT)	$\frac{az^{-1}}{(1-az^{-1})^2}$	$\frac{az}{(z-a)^2}$	$ \mathbf{z} > \mathbf{a} $	
7	cos(ω ₀ kT)	$\frac{1-z^{-1}\cos(\omega_0)}{1-2z^{-1}\cos(\omega_0)+z^{-2}}$	$\frac{z^2 - z\cos(\omega_0)}{z^2 - 2z\cos(\omega_0) + 1}$	$ \mathbf{z} > 1$	
8	sin(ω ₀ kT)	$\frac{z^{-1}\sin(\omega_0)}{1 - 2z^{-1}\cos(\omega_0) + z^{-2}}$	$\frac{z\sin(\omega_0)}{z^2 - 2z\cos(\omega_0) + 1}$	$ \mathbf{z} > 1$	
9	$r^k \cos(\omega_0 kT)$	$\frac{1 - r z^{-1} \cos(\omega_0)}{1 - 2r z^{-1} \cos(\omega_0) + r^2 z^{-2}}$	$\frac{z^2 - r z \cos(\omega_0)}{z^2 - 2r z \cos(\omega_0) + r^2}$	z > r <	
10	$r^k \sin(\omega_0 kT)$	$\frac{r z^{-1} \sin(\omega_0)}{1 - 2r z^{-1} \cos(\omega_0) + r^2 z^{-2}}$	$\frac{r z \sin(\omega_0)}{z^2 - 2r z \cos(\omega_0) + r^2}$	z > r	

Z-Transform Properties (1)

43

 $Z(ax_1(n) + bx_2(n)) = aZ(x_1(n)) + bZ(x_2(n))$ **Linearity:**

 $x_1(n)$ and $x_2(n)$ denote the sampled sequences, **a** and **b** are the arbitrary constants.

Example

Problem:

Find the z-transform of $x(n) = u(n) - (0.5)^n u(n)$

Solution:

Applying the linearity of the z-transform
$$X(z) = Z(x(n)) = Z(u(n)) - Z(0.5^{n}(n))$$

Using z-transform Table

$$Z(0.5^{n}u(n)) = \frac{z}{z - 0.5}$$

Therefore, we get,
$$X(z) = \frac{z}{z-1} - \frac{z}{z-0.5}$$

Z-Transform Properties (2)

44

Shift Theorem:

$$Z(x(n-m)) = z^{-m}X(z)$$

Z-Transform x(n)X(z)

Verification:
$$Z(x(n-m)) = \sum_{n=0}^{\infty} x(n-m)z^{-n}$$
$$= x(-m)z^{-0} + \dots + x(-1)z^{-(m-1)} + x(0)z^{-m} + x(1)z^{-m-1} + \dots$$

Since
$$x(n)$$
 is assumed to be causal: $x(-m) = x(-m+1) = \cdots = x(-1) = 0$

Then we achieve, $Z(x(n-m)) = x(0)z^{-m} + x(1)z^{-m-1} + x(2)z^{-m-2} + ...$

Factoring z^{-m} from Equation we get,

$$Z(x(n-m)) = z^{-m}(x(0) + x(1)z^{-1} + x(2)z^{-2} + \dots) = z^{-m}X(z)$$

Z-Transform Properties (3)

Multiplication by n:

$$nx[n] \Leftrightarrow -z \frac{dX(z)}{dz}$$

Verification:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$

$$\frac{dX(z)}{dz} = -n\sum_{n=-\infty}^{\infty} x[n]z^{-n-1} \quad \Rightarrow \quad -z\frac{dX(z)}{dz} = n\sum_{n=-\infty}^{\infty} x[n]z^{-n} = \mathcal{Z}\{nx[n]\}$$

Ena, Manar Fath

Convolution:

In time domain,
$$x(n) = x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(n-k)x_2(k)$$
 eq.(1)

In Z-transform domain,

$$X(z) = X_1(z)X_2(z)$$

$$X(z) = X_1(z)X_2(z)$$
 Here, $X(z) = Z(x(n)), X_1(z) = Z(x_1(n)), \text{ and } X_2(z) = Z(x_2(n)).$

Verification:

$$X(z) = \sum_{n=0}^{\infty} x(n)z^{-n} = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_1(n-k)x_2(k)z^{-n}$$

$$z^{-n} = z^{-k}z^{-(n-k)}$$

$$X(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_2(k) z^{-k} x_1(n-k) z^{-(n-k)}$$

$$X(z) = \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} x_2(k) z^{-k} x_1(n-k) z^{-(n-k)}$$

$$X(z) = \sum_{k=0}^{\infty} x_2(k) z^{-k} \sum_{n=0}^{\infty} x_1(n-k) z^{-(n-k)}$$

let
$$m = n - k$$
:

$$X(z) = \sum_{k=0}^{\infty} x_2(k) z^{-k} \sum_{m=0}^{\infty} x_1(m) z^{-m}$$

$$\Rightarrow$$

$$X(z) = X_2(z)X_1(z) = X_1(z)X_2(z)$$

Z-Transform Properties (5)

Initial and Final Value Theorems:

Initial Value Theorem:

• The value of x(n) as $k \to 0$ is given by:

$$x(0) = \lim_{k \to 0} x(kT) = \lim_{z \to \infty} X(z)$$

Final Value Theorem:

■ The value of x(n) as $k \to \infty$ is given by:

$$x(\infty) = \lim_{k \to \infty} x(kT) = \lim_{z \to 1} [(z-1)X(z)]$$

Transfer Functions

 In addition to our normal transfer function components, such as summation and multiplication, we use one important additional component: delay (D).

$$x[n] \longrightarrow D \longrightarrow y[n] = x[n-1]$$

$$x[n] \longrightarrow \boxed{z^{-1}} \longrightarrow y[n] = x[n-1]$$
$$Y(z) = z^{-1}X(z)$$

- This is often denoted by its z-transform equivalent.
- We can illustrate this with an example (assume initial conditions are zero):

Basic Interconnections of Transfer Functions

Inverse z-Transform

Formal inverse z-transform is based on a Cauchy integral

$$x(kT) = Z^{-1}[X(z)] = \frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz$$

Less formal ways sufficient most of the time

- 1) Direct or Long Division Method
- 2) Partial fraction expansion and Look-up Table
- 3) Inversion Integral Method (Residue-theorem)

Inverse Z-Transform: Power Series Expansion

Using Long Division to expand X(z) as a series

$$X(z) = x(0) + x(T)z^{-1} + x(2T)z^{-2} + \dots = \sum_{k=0}^{\infty} x(kT)z^{-k}$$

Write the inverse transform as the sequence

$$x(kT) = \{x(0), x(T), x(2T), ...\}$$

Inverse z-Transform: Using Partial Fraction

Table Partial Fraction(s) and Formulas for Constant(s)

Partial fraction with the first-order real pole: $\frac{R}{z-p}$ $R=(z-p)\frac{X(z)}{z}$

Partial fraction with the first-order complex poles: $\frac{Az}{(z-P)} + \frac{A^*z}{(z-P^*)}$ $A = (z-P)\frac{X(z)}{z}$

 $P^* = \text{complex conjugate of } P A^* = \text{complex conjugate of } A$

Partial fraction with mth-order real poles: k from m to 1

$$\frac{R_m}{(z-p)} + \frac{R_{m-1}}{(z-p)^2} + \dots + \frac{R_1}{(z-p)^m} \quad R_k = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left((z-p)^m \frac{X(z)}{z} \right) \Big|_{z=p}$$

Z-transform method for Solution of Difference Equations

Transfer Function Representation

First - Order Case

- Let $\sqrt{y(kT)} + ay(kT + T) = bx(kT)$
- Then take the z-transform to get:

•
$$Y(z) + az^{-1}Y(z) = bX(z)$$

Simplifying:

•
$$Y(z) (1 + az^{-1}) = b X(z)$$

•
$$Y(z) = (b X(z))/(1 + az^{-1})$$

And we have the transfer function H(z):

•
$$Y(z) = H(z) X(z)$$

• so
$$H(z) = \frac{bz}{z+a}$$

By inverse z-transform: $y(kT) = b(-a)^k u(kT)$

