
DISCRET & NTERACTIVE

MATHEMATICS

"[DJ
tp �,i, 1+0 = 1

T F 1 + 1 = 1
r,

1.1=1

all
an a

ln
all all aml

a21
022

02n
0

12
all am2

=

aml am2 a.,l'ln al,
aln amn

PRODUCED BY

ASS. PROF. TAREK EZZAT NASSAR

DR. Mohamed Abozeid

Contents

Introduction I

Chapter 1: Sets, Functions, Relations and Logic. 1

1.1. Sets 1

1.2. Functions. 18

1.3. Relations. 31

1.4. Logic. 39

Chapter 2: Induction and Recursion 61

2.1. Mathematical Induction. 61

2.2. Recursion Solving Recurrence Relations. 68

Chapter 3: Number Theory 74

3.1. Division. 75

3.2. Integer Representations. 83

3.3. Primes. 87

3.4. Greatest Common Divisors. 89

3.5. Least common multiple. 91

3.6. Applications. 92

Chapter 4: Graph Theory 94

4.1. Graphs 95

4.2. Graph Models. 100

4.3. Basic graph terminology. 105

4.4. Some special simple graphs. 112

4.5. Representing graphs 120

References 125

I

Introduction

Discrete mathematics is a branch of mathematics that deals with mathematical

structures and objects that are fundamentally discrete or distinct in nature.

Unlike continuous mathematics, which focuses on concepts such as real

numbers and continuous functions, discrete mathematics focuses on countable

and finite sets, integers, graphs, and logical statements.

 One of the fundamental concepts in discrete mathematics is set theory,

which provides the foundation for many other areas. Sets are collections of

distinct elements and are used to represent various mathematical objects.

Operations such as union, intersection, and complementation are defined on

sets.

 Logic is also a fundamental component of discrete mathematics. It deals

with the rules of reasoning and inference. Propositional logic focuses on the

study of logical statements and their truth values, while predicate logic extends

this to include quantifiers and predicates. Logic plays a crucial role in computer

science, artificial intelligence, and mathematics itself.

 Another important area of discrete mathematics is combinatorics, which

studies counting, arrangement, and combination of objects. Combinatorics deals

with topics such as permutations, combinations, and the binomial coefficient. It

has applications in various fields, including computer science, cryptography,

and probability theory.

 Graph theory is another key topic in discrete mathematics. It studies the

properties and relationships of graphs, which consist of vertices (nodes) and

edges (connections between vertices). Graph theory is widely used in computer

science, network analysis, and optimization problems.

Discrete mathematics finds applications in various fields, including computer

science, cryptography, operations research, and information theory. It provides

the theoretical foundation for many computational algorithms, data structures,

and optimization techniques. Overall, discrete mathematics is concerned with

the study of discrete structures and provides a powerful toolkit for solving

problems in various domains by employing rigorous mathematical reasoning

and logical thinking.

1

Chapter One

Sets, Functions, Relations, and Logic

1.1. Set

Set is one of the basic building blocks for the types of objects

considered in discrete mathematics. It’s a basis for

Mathematics pretty much all Mathematics can be formalized

in Set Theory. Why is Set Theory important for Computer

Science? It’s a useful tool for formalizing and reasoning

about computation and the objects of computation. The

concept of a set is so fundamental that we will not attempt to

give it a precise definition. A set is a completely characterized

by the elements it contains.

There are two main ways of defining a set:

(1) By explicitly listing all its elements as:

 A = {a, i, e, o, u} Set of all vowels in the

English alphabet.

(2) By giving a property that all elements must satisfy

as:

 E = {n ∈ N | n divides 2} set of natural

numbers given by specifying a property.

In some cases both methods can be used to define the same

set, as in this example

2

 { n ∈ N | n is odd ∧ n2 + n  100} = {1, 3, 5,

7, 9}

Some Important Sets

 N=natural numbers = {0, 1, 2, 3, …}.

Z=integers numbers = {…, 3, 2, 1, 0, 1, 2, 3, …}.

Z⁺= positive integers numbers = {1, 2, 3, …}.

R=set of real numbers.

To say that a certain object x is an element of a set S,

we write x ∈ S. To say that it isn’t an element of S we write

x ∉ S. If every element of a set X is also an element of another

set Y, then we say that X is a subset of Y and we write this

symbolically as: X ⊆ Y.

Formally, the subset relation is defined as follows:

 X ⊆ Y ⇔ for every x

∈ X ⇒ x ∈ Y.

As example, here’s a couple of subsets of the sets A and E

from above:

 {a, i} ⊆ A

 {x ∈ N | n is a multiple of 4} ⊆ E

There is a set that is contained in any other set: the empty set,

that is, the set with no elements. We use the symbol ∅ for it:

 ∅ = { }.

3

It is always trivially true that ∅  X and also that X ⊆ X.

Example 1

The set of all real roots of the equation x2 - 2x - 3 = 0 is

denoted by

 {x: x is a real number & x2 - 2x - 3 = 0 } or {-1, 3}

Sometimes we shall define a set merely by listing its elements

within braces:

 {a, b, c, ..., h}. In particular, {b} is the set having b as

its only member.

Such a set {b} is called a singleton.

The set {b, c} contains b and c as its only members, and,

if b ≠ c, then {b, c} is called an unordered pair. Notice that

{b, c} = {c, b}.

Example 2

The set of all real roots of the equation x2 - 3 = 0 is equal to

the set { 3 ,- 3 }.

We shall extend this method of denoting sets by listing a few

elements of the set, followed by dots, in such a way as to

indicate the characteristic property of the elements of the set.

Example 3

Let {1, 2, 3, 4, ... } is intended to represent the set of positive

integers Z. {1, 4, 9, 16, 25, ..., n2, ...} is the set of squares of

positive integers. When, we define a set by a property, we

4

should also clarify in advance what kind of objects we are

talking about: in the examples above, we wrote n ∈ N to

specify that we are talking about natural numbers. This larger

set, containing all the objects that we are interested in, is

called the universal set or just the universe. We will be using

the letter U to denote the universal set. Sets can be combined

and manipulated by using the operations of intersection,

union, difference, complement.

1.1.1. Set Equality

Definition: Two sets are equal if and only if they have the

same elements. Therefore if A and B are sets, then A and B

are equal if and only if

 ()x x A x B   

We write A= B if A and B are equal sets.

 {1, 3, 5} = {3, 5, 1}.

Here are their intuitive meaning and their rigorous

mathematical definitions, assuming that S and T are any two

sets:

• Intersection S ∩ T: the elements that belong both to

S and to T.

S ∩ T = {x ∈ U | x ∈ S ∧ x ∈ T }

5

• Union S ∪ T: the elements that belong either to S or

to T (or both).

S ∪ T = {x ∈ U | x ∈ S ∨ x ∈ T}

• Difference S-T: the elements that belong to S but not

to T.

S - T = {x ∈ U | x ∈ S ∧ x  T}

• Complement S : elements (of the universe) that don’t

belong to S.

 S = {x ∈ U | x ∉ S}

• Equality S=T: The sets S and T are equal when and

only when S and T have the same members.

{Equality of S and T is designated in the usual way

by S = T, and denial of this equality by ST}

Example 4

 Let a) {1, 2, 3} ∪ {1, 3, 4, 6} = {1, 2, 3, 4, 6}

 b) {a) ∪ {b} = {a, b}

 c) {0, 2, 4, 6, 8, ... } ∪ {1, 3, 5, 7, 9, ...} =

{0,1, 2, 3, 4, 5, ...}

 d) {1, 2, 3} ∩ {1, 3, 4, 6} = {1, 3}

 e) {0, 1, 4, 7, 8} - {1, 3, 5, 7, 9} = {0, 4, 8}

 f) {1, 3, 5} ∩ {2, 4, 6} = 

6

 h)  0, 2, 4, 6, 8, ... = {1, 3, 5, 7, 9, ...}

1.1.1. Venn Diagrams

We can represent arbitrary sets pictorially by some

drawings called Venn diagrams. Sets are blobs that overlap

each other. Any region of the drawing can be characterized

by some expression obtained by combining the sets by set

operations

1) 2)

The shaded area represents A ∩ B The shaded

area represents A ∪ B

 3) 4)

The shaded area represents A - B The shaded

area represents A

Venn diagram associated to an expression. Given any

expression combining variable names for sets using the

7

operators of intersection, union, difference and complement,

we can draw a Venn diagram and identify on it the area

associated with the given expression. For example, here is a

Venn diagram with a shaded area associated to the expression

5)

 (A∪C)-B

1.1.2. Subsets

Definition: The set A is a subset of B, if and only if every

element of A is also an element of B.

 The notation A B is used to indicate that A is a

subset of the set B.

A  B holds if ()x x A x B  →  is true.

The subset relation, , is a partial order relation on sets,

that is, it satisfies the properties of reflexivity, antisymmetry

and transitivity:

• Reflexivity: X  X

• Antisymmetry: (X  Y) ∧ (Y  X) ⇒ X = Y

• Transitivity: (X  Y) ∧ (Y  Z) ⇒ X  Z

8

It is clearly not total: given two sets, it is not necessary

that one of the two is contained in the other one. A set can

contain other sets, like a box containing smaller boxes.

1.1.3. The algebra of sets

The expressions obtained by combining sets by set

operations form a kind of algebra. To check what equalities

hold in this algebra, we can use Venn diagrams. Remember,

however, that the diagrams are only intuitive drawings and

they are not considered a proper proof.

For example, we want to check if the following

equality is true for all possible sets A, B and C:

 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪

C).

In other words: does union distribute over intersection?

Let’s construct two Venn diagrams depicting the left-hand

and right-hand side of this equality, respectively:

 shaded area: A shaded area: B ∩ C

shaded area: A ∪ (B ∩ C)

9

 shaded area: A ∪ B shaded area: A ∪ C shaded
area: (A∪ B) ∩ (A∪ C)

We obtained the same area in the two diagrams for the two

sides of the equality. This tells us that the equality is

probably true.

This was not a proper proof: Venn diagrams are

only an intuitive way to picture sets, they do not actually

correspond to the real sets. If we want to be mathematically

sure of the equality, we must prove it rigorously from the

definitions.

Proof.

Let’s unfold the definitions to check what it means to be an

element of those two sets. For every element x ∈ U we have

that:

 x ∈ A ∪ (B ∩ C) ⇔ (x ∈ A) ∨ (x ∈ B ∩ C)

 ⇔ (x ∈ A) ∨ ((x ∈ B) ∧ (x

∈ C));

10

 x ∈ (A ∪ B) ∩ (A ∪ C) ⇔ (x ∈ A ∪ B) ∧ (x ∈ A ∪

C)

 ⇔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x

∈ A) ∨ (x ∈ C)).

But now, by distributive of disjunction over conjunction, we

have that:

(x∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) ⇔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x

∈ A) ∨ (x∈ C)).

If you’re not convinced of this step, go back to the

rules of Boolean algebra. Check the rule of distributive of

disjunction over conjunction and make the following

substitutions: replace A by (x ∈ A), replace B by (x ∈ B)

and replace C by (x ∈ C). You will obtain exactly the

equivalence above.

If we put all the equivalences together, we obtain:

x ∈ A ∪ (B ∩ C) ⇔ x ∈ (A ∪ B) ∩ (A ∪ C).

This states that being an element of A∪ (B∩C) is equivalent

to being an element of (A ∪ B) ∩ (A ∪ C).

In conclusion: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

Example 5

11

 Show that: A ∩ (A ∪ B) = A.

Let A  (A ∪ B) then A ∩ A= A

 : hence A ∩ (A ∪ B) = A.

Example 6

 Show that: A∪ (A∩B) = A.

 A∪ (A∩B) = (A∪A) ∩ (A∪B) = A ∩

(A∪B) = A

Notice that we exploited the Boolean law of

distributive of disjunction over conjunction to prove

distributive of union over intersection. This works because

intersection was defined using conjunction and union was

defined using disjunction. It is a general pattern: all the rules

of Boolean algebra give corresponding rules of set algebra.

Complement corresponds to negation. So if you take a

Boolean equality, replace

 Sign ∧ by ∩, and sign ∨ by ∪

and sing ¬ by . , you obtain a set equality.

For example, the first De Morgan law becomes:

 .A B A B=

 .A B A B=

Try to prove this equality formally, like we did above for

distributive.

12

Example 7

 Show that A  B if and only if A ∩ B =  .

The cross hatched area is A ∩ B .

To say that this is  is equivalent to saying that A is entirely

within B.

 A = A ∩ U = A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B)

Hence if (A ∩ B) =  then A = A ∩ B; therefore,

By using: A ∩ B = A if and only if A  B, and therefore

 A ∩ B = (A ∩ B) ∩ B = A ∩ (B∩ B) = A∩ () =



Example 8

Simplify A B ∪ (B ∩ C)

 A B ∪ (B ∩ C) = (A B) ∪ (B ∩ C)

 = A ∪ (B ∪ (B ∩ C)) = A ∪

B

1.1.4. Cartesian Product

13

Another important binary operation on sets is the

Cartesian Product: given two sets A and B, their Cartesian

product, indicated by A × B is the set of pair of elements

from them. If a ∈ A and b ∈ B, then we indicate by ,a b

the pair that they form. So we have:

 A × B = { ,a b

| a ∈ A ∧ b ∈ B}.

The order of the pair is important: the same two elements

may form two different pairs in inverse orders.

For example, take the two sets to be:

 A = {apple, banana, cherry},

 B = {peach, banana, apple,

strawberry}.

Then, both ,apple banana and ,banana apple are elements of

A × B and they are considered different

 ,apple banana ≠ ,banana apple

Notice, in passing, that a pair like ,peach cherry is not

an element of the Cartesian product, because peach is not an

element of A and also because cherry is not an element of B

,peach cherry ∉ A × B.

On the other hand, the order of the elements is not important

when we give a set by enumerating its elements. In that case

14

we are only interested in what elements are in the set, not the

way they are listed:

 {apple, banana} = {banana, apple},

 {peach, banana, apple, strawberry} = {strawberry, peach,

apple, banana}.

Example 9

If A = {1, 2} and B = {2, 3, 4}, then

 A × B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3),

(2, 4)}

Notice that Cartesian product is in general not commutative.

In the case of the

above example, we have:

 B × A = {(2, 1), (2, 2), (3, 1), (3, 2), (4, 1),

(4, 2)}

So, for instance, we have (1, 2) ∈ A × B and (1, 2) ∉ B × A.

Example 10

What is A × B × C where A = {0, 1}, B= {1,2} and C= {0,

1, 2}

Solution: A× B × C={(0,1,0), (0,1,1), (0,1,2),

(0,2,0),(0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0),

(1,2,1), (1,2,2)}.

15

1.1.5. Power Sets

Definition: The set of all subsets of a set A, denoted P(A) is

called the power set of A.

Example 11

1) A= {a, b} then P(A)={ø,{a},{b},{a, b}}

2) B={apple, banana, cherry} then

P (B) =∅, {apple}, {banana}, {cherry}, {apple,

banana},

 {apple, cherry}, {banana, cherry},{apple,

banana, cherry}

1.1.6. Set Cardinality

Definition: If there are exactly n distinct elements in S where

n is a nonnegative integer, we say that S is finite. Otherwise

it is infinite.

Definition: The cardinality of a finite set A, denoted by |A|,

is the number of distinct elements of A.

Example 12

1) A = {a, i, e, o, u}, then |A|= 5

16

2) B={

1, 2,

3}

then

|B|= 3

3)  ,

then |

 |= 0

Exercises

1.1

1) List all subsets of the set {1, 2,

3, 4}.

17

2) Prove that if A ⊆ B and B ⊆ C,

then A ⊆ C.

3) Let A = {x ∈ R | (x > 0) ∧ (x2 = 3)} Give a simpler

definition of the set A.

4) Draw a Venn diagram to illustrate the fact A ∪ B ⊆

C.

5) Prove the following statements:

i) A ∩ ∅ = ∅ ii) A ∪ ∅ = A iii) A ∩ A = A

∪ A = A

6) Prove the following:

i) A ⊆ B iff A ∪ B = B. ii) A ⊆ B iff A

∩ B = A.

7) Prove the following:

i) A - ∅ = A. ii) ∅ - A = ∅. iii) A - B

= A ∩ B .

8) Let A = {1, 3, 5}, B = {2, 4}. Find A × A, B × B, A ×

B, B × A.

9) Use the set A={1, 2, 3, 4}to find

a) Power of A b) |A|

18

1.2. Functions

 A function between two sets is a rule or a

correspondence that associates to every element of the first

set a unique element of the second set. For example, consider

a correspondence between a set of three people and a set of

fruit; it’s a function that associates to every person her/his

favorite fruit:

19

This defines a function; let’s call it favorite, between two sets.

We use the following notation to denote this fact:

favourite: {Anna, Brian, Carla} → {apple, banana, cherry,

peach}

 favourite (Anna) = banana

 favourite (Brian) = peach

 favourite(Carla) = apple

The set from which the function starts is called its domain;

the one where it arrives is called its codomain.

When the domain is finite, as in the example above,

we can define the function by just giving its values on every

element, as we did. This is clearly impossible when the

domain is an infinite set, for example the natural numbers. In

that case the function needs to be defined by a formula or by

some rule. Recursive definitions, which we studied a few

lectures ago, are also a method to define a function.

1.2.1. Injective Functions (one-one)

We say that a function is injective if every element of

the domain is associated to a different result, that is, if no two

elements share the same result. Formally we can define it as

follows. Suppose

 f : A → B

20

 f is injective ⇔ x = y ⇒ f(x) = f(y) for all

elements x, y ∈ A.

The function favourite is injective because every

person has a different favourite fruit. It is very useful to apply

the definition in the contrapositive way: if two elements give

the same result, then they must be equal.

1.2.2. Surjective Functions (Onto)

 We say that a function is surjective if every element

of the codomain is the result of applying the function to

some element of the domain, that is, if every element is

the “target” of the function for some argument.

Formally we can define it as follows.

 f is surjective ⇔ for every b ∈ B there is some a ∈ A such

that f(a) = b.

The function favourite is NOT surjective because cherry is

nobody’s favourite fruit.

Consider instead the following function, going in the

opposite direction which associates to every fruit the person

that owns it:

Owner: {apple, banana, cherry, peach} → {Anna, Brian,

Carla}

 Owner (apple) = Anna , Owner (banana)

= Carla

21

 Owner (cherry) = Anna, Owner (peach)

= Brian

This function is in fact surjective: every person owns at least

one fruit. On the other hand it is not injective: when applied

to apple and cherry it gives the same result, Anna.

 f is injective ⇔ f(x) = f(y) ⇒ x = y for all elements

x, y ∈ A.

1.2.3. Bijective Functions (one-one and onto)

 A bijective function is one that is both injective and

surjective. Neither of the two functions defined above is

bijective:

favourite isn’t because it’s not surjective and owner isn’t

because it’s not injective. Let’s consider the following

function f that associates a number smaller than 4 to fruit:

 fn: { apple, banana, cherry, peach}→{0,1,2,3}

 fn (apple) = 2 fn (banana) = 0

 fn (cherry) = 3 fn (peach) = 1

This function is injective (no two elements give the same

result) and surjective (every number in the codomain is the

result for some argument), therefore it is bijective.

Example 13

22

Let f be the function from {a, b, c, d} to {1, 2, 3}

defined by

 f (a) =3, f (b) =2, f (c) =1, and f (d)= 3.

 Is f onto function?

Solution:

Yes, f is onto since all three elements of the codomain

are images of elements in the domain. If the codomain were

changed to {1, 2 , 3, 4}, f would not be onto.

Example 13

Is the function f(x) = x2 from the set of integers to the set of

integers onto? Solution:

No, f is not onto because there is no integer x with x2 = −1,

for example.

Example 14

Let’s look at three numerical functions now and

determine which of the properties of injectivity, surjectivity

and bijectivity they satisfy:

f : N → N

 f (n) = 2 × n + 1

This function is injective:

23

 Suppose f(n) = f(m), that is, 2 × n + 1 = 2 × m + 1;

simple Arithmetic then tells us that n = m.

On the other hand it is not surjective: the values 0 and 2 (and

all other even numbers) are not results of f.

half : N → N at half(n) = n/2

This function is not injective: half (0) = 0 and half (1) = 0,

so two distinct arguments give the same result.

But it is surjective: every number m can be obtained as

the result of this function on a certain argument, by taking

n = 2 × m;

 in fact, half (2 × m) = m.

 Swap : N → N

 Swap(n) = n + 1 if n is even

 Swap(n) = n − 1 if n is odd

This function is both injective and surjective (I leave it to

you to prove it). This fact can be clearly seen if we draw it

using arrows

1.2.4. Composition

24

Suppose we have two functions such that the codomain

of the first coincides with the domain of the second:

 f : A → B and g : B → C.

We can compose them by applying one after the other:

starting with an element of A we first compute f on it and then

we compute g on the result that we obtained from the first

step:

() (())

f gA B C

x f x g f x

⎯⎯→ ⎯⎯→

⎯⎯→ ⎯⎯→

The result is a function from A to C that we denote by

g ◦f. Attention: the first function to be applied, f, is written

to the right of the second to be applied, g.

:

()() (())

g f A C

g f x g f x

⎯⎯→

⎯⎯→

Example 15

Let’s compute the composition of the favorite fruit and

owner functions from above. The clearest way to do it is

to represent them using arrows to show the associations

and then “follow the arrows” to find the result of the

composition. In our case we have:

 A = {Anna, Brian, Carla}, B = {apple, banana, cherry, peach}

and C = {Anna, Brian, Carla}.

25

Owner Favourite: {Anna, Brian, Carla} → {Anna, Brian,

Carla}

 (owner favourite)(Anna) = Carla

 (owner favourite)(Brian) = Brian

 (owner favourite)(Carla) = Anna

For a numeric example, let’s compose the two

functions f and half on the natural numbers:

 half

f : N → N

 (half f) (n) = (2 × n + 1)/2

In this case the expression for the composition can be

simplified:

 (half f)(n) = n.

The simplest of all functions is the one that doesn’t do

anything: it gives as result the argument itself. It is

called the identity function:

Id : A

→ A

26

Id (a) =

a

Suppose we have two functions going in opposite

directions:

 f : A → B and g : B → A.

We say that they are inverse of each other if both

 g f = Id and f g = Id.

Be careful: both compositions must be checked; in general

they give different functions. In fact g f is a function from

A to A, while f g is a function from B to B.

For example

we notice that,

as above, half f = id.

But if we compose the functions the other way around we

don’t get the identity anymore.

Example 16

In the case of the function f : R → R defined by f (x) = 2x

+ 3, there is an inverse function, namely

 g : R → R defined by g(x) = (x -

3)/2.

In the case of a function given in the form y = f (x), finding

27

an inverse amounts to “solving” for x. Thus, in the example

above, if we express the original function f in the equational

form y = 2x + 3 then solving for x gives

 x = (y - 3)/2 .

In other words, the inverse function is the function

 g : R → R defined by g(y) =(y -3)/2.

The only difference between this formulation of the

definition of g and the first one is the use of x as the variable

the first time, y the second time. In specifying a function, one

is of course free to use any variable whatsoever, since the

variable is just a kind of place marker, where particular

arguments can be substituted in order to calculate the value.

Since it is common to write real functions using x as variable,

we first of all wrote the definition of g in terms of x. Another

way of defining the notion of an inverse is that g is an inverse

of a function

 f : A → B iff g : B → A

And g ◦ f = IdA and f ◦ g = IdB

where IdA, IdB are the identity functions on A, B,

respectively.

Example 17

28

If (f half) (2) = 3. So half and f are not inverse of each

other. (We may still say that half is a left inverse of f and that

f is a right inverse of half).

 If f : A → B has an inverse, this is denoted by f

-1
.

The most important fact about bijections is that they are

exactly those functions that can be inverted.

Theorem

 The following equivalence is true for every function f : A

→ B:

 f is bijective ⇔ f

has an inverse.

(We will not look at the proof of this theorem,

 but you may want to try to give it

yourself.)

For example, we remarked earlier that the function fn

is bijective. It is easy to compute its inverse by associating to

each number the fruit that’s mapped to it by fn:

 fn-1 : {0, 1, 2, 3} → {apple, banana, cherry,

peach}

 fn-1 (0) = banana fn-1 (1) =

peach

29

 fn-1 (2) = apple fn-1 (3) =

cherry.

Example 18

Let f and g be functions from the set of integers to the set of

integers defined by

 f(x) =2x+3 and g(x) =3x+2.

What is the composition of f and g, and also the composition

of g and f?

Solution:

f ◦ g (x) = f (g(x)) = f(3x+2) = 2(3x+2)+3 = 6x+7

g ◦ f (x) = g (f(x)) = g(2x+3) = 3(2x+3) +2 = 6x+11

Example 19

Let f : Z→ Z be such that f(x) = x + 1. Is f invertible, and

if so, what is its inverse?

Solution:

The function f is invertible because it is a one to one

correspondence. The inverse function f-1 reverses the

correspondence so f-1= y-1.

Exercises 1.2

30

1) Let A = {1, 2}, B = {1, 2, 3}. List all the functions from A

to B.

2) Identify those functions in question (1) which are

 (a) one-one (b) onto

(c) bijective

 In each case, identify the range of the function.

3) Define f : R → R by

 Define g : R → R by

 Find formulas for the functions g ◦ f and f ◦ g.

 Use this example to show that g ◦ f = f ◦ g is not in

general true.

4) Define f : R2 → R2 by f (x, y) = (x + 2y, x - y).

 Show that f is a bijection and find f -1

31

1.3.

Relations

 A relation is a set of inputs and outputs, often written as

ordered pairs (input, output). We can also represent a relation

as a mapping diagram or a graph. For example, the relation

can be represented as:

32

The following diagram shows some examples of relations and

functions. Scroll down the page for more examples and

solutions on how to determine if a relation is a function.

1.3.1. Determining whether a relation is a function

Understanding relations (defined as a set of inputs and

corresponding outputs) is an important step to learning what

makes a function. A function is a specific relation, and

determining whether a relation is a function is a skill

necessary for knowing what we can graph. Determining

whether a relation is a function involves making sure that for

every input there is only one output.

How to determine if a relation is a function?

A function is a correspondence between a first set, called the

domain, and a second set, called the range, such that each

member of the domain corresponds to exactly one member of

the range. The graph of a function f is a drawing hat

33

represents all the input-output pairs, (x, f(x)). In cases where

the function is given by an equation, the graph of a function

is the graph of the equation

 y = f(x).

The vertical line test - a graph represents a function if it is

impossible to draw a vertical line that intersects the graph

more than once.

In the above section dealing with functions and their

properties, we noted the important property that all functions

must have, namely that if a function does map a value from

its domain to its co-domain, it must map this value to only

one value in the co-domain. Writing in set notation, if a is

some fixed value:

 |{f(x)|x=a}| ∈ {0, 1}

The literal reading of this statement is: the cardinality

(number of elements) of the set of all values f(x), such that x=

a for some fixed value a, is an element of the set {0, 1}.

In other words, the number of outputs that a function f

may have at any fixed input a is either zero (in which case it

is undefined at that input) or one (in which case the output is

unique). However, when we consider the relation, we relax

this constriction, and so a relation may map one value to more

than one other value. In general, a relation is any subset of the

34

Cartesian product of its domain and co-domain. All functions,

then, can be considered as relations also.

Notations

When we have the property that one value is related to

another, we call this relation a binary relation and we write it

as

 x R y , where R is the relation.

Example 20

Let us examine some simple relations. Say f is defined by

{(0,0),(1,1),(2,2),(3,3),(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)}

This is a relation (not a function) since we can observe that

1 maps to 2 and 3, for instance.

Less-than, "<", is a relation also. Many numbers can be less

than some other fixed number, so it cannot be a function.

Definition

A relation from a set A to a set B is a subset of A×B. Hence,

a relation R consists of ordered pairs (a, b), where a∈A and

b∈B. If (a,b) ∈R, we say that is related to , and we also write

aRb.

35

Example 21

 Let A={1,2,3,4,5,6} and B={1,2,3,4}.

Define (a, b) ∈R if and only if (a−b) mod2 = 0.

Then

R={(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4),(5,1),(5,3),(6

,2),(6,4)}.

We note that R consists of ordered pairs (a, b) where a and b

have the same parity. Be cautious, that 1≤ a ≤ 6 and 1 ≤ b ≤

4.

Hence, it is meaningless to talk about whether (1, 5) ∈R or

(1, 5) ∉R.

1.3.2. Properties of Relations

When we are looking at relations, we can observe some

special properties different relations can have.

1. Reflexive

A relation is reflexive if, we observe that for all values a:

 a Ra

In other words, all values are related to themselves.

The relation of equality, "=" is reflexive. Observe that for, say,

all numbers a (the domain is R):

 a = a

so "=" is reflexive.

36

In a reflexive relation, we have arrows for all values in the

domain pointing back to themselves:

Note that ≤ is also reflexive (a ≤ a for any a in R). On the other

hand, the relation < is not (a < a is false for any a in R).

2. Symmetric

A relation is symmetric if, we observe that for all values of a

and b:

 a Rb implies b Ra

The relation of equality again is symmetric. If x=y, we

can also write that y=x also.

In a symmetric relation, for each arrow we have also an

opposite arrow, i.e. there is either no arrow between x and y,

or an arrow points from x to y and an arrow back from y to x:

Neither ≤ nor < is symmetric (2 ≤ 3 and 2 < 3 but neither 3 ≤

2 nor 3 < 2 is true).

3. Transitive

A relation is transitive if for all values a, b, c:

 a Rb and b R c implies a R c

https://commons.wikimedia.org/wiki/File:Arrow_diagram_reflexive.png
https://commons.wikimedia.org/wiki/File:Arrow_diagram_symmetric.png

37

The relation greater-than ">" is transitive. If x > y, and

y > z, then it is true that x > z. This becomes clearer when we

write down what is happening into words. x is greater than y

and y is greater than z. So x is greater than both y and z.

The relation is-not-equal "≠" is not transitive. If x ≠ y

and y ≠ z then we might have x = z or x ≠ z (for example 1 ≠

2 and 2 ≠ 3 and 1 ≠ 3 but 0 ≠ 1 and 1 ≠ 0 and 0 = 0).

In the arrow diagram, every arrow between two values a and

b, and b and c, has an arrow going straight from a to c.

4. Antisymmetric

A relation is antisymmetric if we observe that for all values a

and b:

 a Rb and bRa implies that a=b

Notice that antisymmetric is not the same as "not symmetric."

Take the relation greater than or equal to, "≥" If x ≥ y, and

y ≥ x, then y must be equal to x. a relation is anti-symmetric

if and only if a∈A, (a,a) ∈R .

5. Trichotomy

A relation satisfies trichotomy if we observe that for all values

a and b it holds true that:

https://commons.wikimedia.org/wiki/File:Arrow_diagram_transitive.png

38

 aRb or bRa

The relation is-greater-or-equal satisfies since, given 2

real numbers a and b, it is true that whether a ≥ b or b ≥ a

(both if a = b).

1.3.3. Operations on Relations

There are some useful operations one can perform on

relations, which allow to express some of the above

mentioned properties more briefly.

1. Inversion

Let R be a relation, then its inversion, R-1 is defined by

 R-1 := {(a,b) | (b,a) in R}.

2. Concatenation

 Let R be a relation between the sets A and B, S be a

relation between B and C. We can concatenate these relations

by defining

 R • S := {(a,c) | (a,b) in R and (b,c) in S for some b

out of B}

3. Diagonal of a Set

Let A be a set, then we define the diagonal (D) of A by

 D(A) := {(a,a) | a in A}

39

Shorter Notations

Using above definitions, one can say (lets assume R is a

relation between A and B):

R is transitive if and only if R • R is a subset of R.

R is reflexive if and only if D(A) is a subset of R.

R is symmetric if R-1 is a subset of R.

R is antisymmetric if and only if the intersection of R and R-

1 is D(A).

R is asymmetric if and only if the intersection of D(A) and R

is empty.

R is a function if and only if R-1 • R is a subset of D(B).

In this case it is a function A → B. Let's assume R meets the

condition of being a function, then

R is injective if R • R-1 is a subset of D(A).

R is surjective if {b | (a,b) in R} = B.

1.4. Logic

1.4.1. Truth Tables

Since we have defined the logical connectives ∧, ∨, ¬, ⇒, ⇔

in terms of truth

and falsity alone, and not to meaning, it is possible to

represent (or illustrate) them by means of a table: a truth

table. We introduce two symbols: T to denote “true” and F

40

to denote “false”. The behavior/definition of φ ∧ ψ can then

be illustrated by the table:

In the first two columns appear all the possible combinations

of values of T and F that the two statements φ and ψ can have.

In the third column we give the value φ ∧ψ achieves

according to each assignment of T or F to φ and ψ. Thus, we

see that φ ∧ ψ is T only when both φ and ψ are T. For φ ∨ ψ

we have the table

41

Again, the definition of ¬φ can be represented thus:

For φ ⇒ ψ we have:

One can go on to construct truth tables for more complicated

expressions. Consider, for example, the expression (φ ∧ ψ) ∨

(¬φ). We can build its table column by column as follows:

42

We can also draw up tables for expressions such as (φ ∧ ψ) ∨

θ, but if there

are n constituent statements involved there will be 2n rows in

the table, so already (φ ∧ ψ) ∨ θ needs 8 rows.

Truth tables can be useful in checking that two rather

complex statements are equivalent. For, by our definition of

equivalence, two statements will be equivalent if they have

the same truth table. For example, we can demonstrate the

equivalence of ¬(φ ∧ ψ) and (¬φ) ∨ (¬ψ) as follows:

Since the two columns marked * are identical, we know that

the two expressions are equivalent.

1.4.2. Contrapositives

The contrapositive of a conditional φ ⇒ ψ is the

conditional

 ¬ ψ ⇒ ¬ φ

43

(Note that the introduction of the negation sign is

accompanied by a change in the direction of the arrow.)

For example, for the implication If 2n - 1 is prime, then n is

prime the contrapositive implication is If n is composite (i.e.,

not prime), then 2n - 1 is composite. The following result is

the logical basis for the mathematical concept of proof by

contrapositive, where an implication is proved by

establishing its contrapositive.

1.4.3.

Boolean

Algebra

The purpose of these notes is to introduce Boolean

notation for elementary logic. In this version of things we use

0 for F (False) and 1 for T (True). Negation is represented by

placing a bar (or over line) across an expression.

Thus we write

 ∼ A = A.

The over line can go across a complex expression. Thus we

have

 ∼ (A ∨ B) = A ∨ B.

44

In Boolean notation, we use multiplication for “and” and

addition for ‘’ or’’

Thus, we write

 A ∨ B = A + B

and we write

 A ∧ B = AB

Note, for example, how DeMorgan’s Law transcribes in the

Boolean notation

 ∼ (A ∨ B) = A B+ ,

 ∼ A ∧ ∼ B = A B

Remark on Boolean Arithmetic.

The Boolean values of 0 and 1 form a very simple arithmetic

with the following rules.

1. 0 = 1

2. 1 = 0

 3. 0 + 0 = 0

 4. 0 + 1 = 1 + 0 = 1

 5. 1 + 1 = 1 (watch out for that one!)

 6. 1 × 1 = 1

 7. 0 × 0 = 0 × 1 = 1 × 0 = 0

It is a remarkable fact that all the identities in basic

logic and Boolean algebra are simply the identities that are

true about this arithmetic. For example, the identity A= A

45

can be interpreted as saying that for any element A of the

Boolean Arithmetic A= A. And you only have to check that

this is true for A = 0 and for A = 1 to prove it.

Note that in Boolean notation we have

 (A ⇒ B) = A B.

This makes a compact notation for implication.

Here is a list of identities that you are familiar with,

written in Boolean notation. You can make these into

exercises by either translating them into logic or set notation

or seeing that they are true via truth tables or Venn diagrams

or you can verify that they are true in Boolean arithmetic.

1. A= A.

2. A + B = B + A
3. (A + B) + C = A + (B + C)

 4. AB = BA

 5. (AB) C = A (BC)

 6. A + A = A

 7. 1 + A = 1

 8. 0 + A = A

 9. A + A =1

 10. A A= 0

 11. A (B + C) = AB + AC

 12. A + BC = (A + B) (A + C)

46

 13. A+B= AB

1.4.4. Fundamental Concepts of Boolean Algebra

Boolean algebra is a logical algebra in which symbols

are used to represent logic levels. Any symbol can be used;

however, letters of the alphabet are generally used. Since the

logic levels are generally associated with the symbols 1 and

0, whatever letters are used as variables that can take the

values of 1 or 0. Boolean algebra has only two mathematical

operations, addition and multiplication. These operations are

associated with the OR gate and the AND gate, respectively.

 Logical Addition

When the + (the logical addition) symbol is placed

between two variables, say X and Y, since both X and Y can

take only the role 0 and 1, we can define the + Symbol by

listing, all possible combinations for X and Y and the

resulting value of X + Y. The possible input and output

combinations may arranged as follows:

0 + 0 = 0
0 + 1 =1

1+ 0 = 1
1 + 1 = 1

47

This table represents a standard binary addition, except for the

last entry. When both' X and Y represents 1‟s, the value of X

+ Y is 1. The symbol + therefore does not has the “Normal”

meaning, but is a Logical addition symbol. The plus symbol

(+) read as "OR", therefore X +Y is read as X or Y.

This concept may be extended to any number of

variables for example A + B + C +D = E Even if A, B, C and

D all had the values 1, the sum of the values i.e. is 1.

Logical Multiplication

We can define the "." (logical multiplication) symbol

or AND operator by listing all possible combinations for

(input) variables X and Y and the resulting (output) value of

X. Y as,

0 .0= 0
0 .1 = 0
1 .0 = 0
1 .1 = 1

Note: Three of the basic laws of Boolean algebra are the same

as in ordinary algebra; the commutative law, the associative

law and the distributive law.

48

The commutative law:

for addition and multiplication of two variables is written

as,

 A + B = B +

A

and A . B = B . A

The associative law:

for addition and multiplication of three variables is

written as,

 (A + B) + C = A + (B +

C)

and (A .B) . C = A. (B. C)

The distributive law:

for three variables involves, both addition and

multiplication and is written as,

 A (B+ C) = A B + AC

Note that while either '+' and „.‟ s can be used freely. The

two cannot be mixed without ambiguity in the absence of

further rules.

Example 22

49

Does

 A . B + C means (A . B) + C or A . (B+ C)?

These two form different values for A = O, B = 1 and C = 1,

because we have

 (A . B) + C = (0.1) +

1 = 1

and A . (B + C) = 0 . (1 + 1) = 0

which are different. The rule which is used is that „.‟ is

always performed before '+'.

 Thus X.Y + Z is (X.Y) + Z.

1.4.5 Logic Gates

A logic gate is defined as an electronics circuit with

two or more input signals and one output signal. The most

basic logic Circuits are OR gates, AND gates, and invertors

or NOT gates. Strictly speaking, invertors are not logic gates

since they have only one input signal; however. They are

best introduced at the same time as basic gates and will

therefore be dealt in this section.

OR Gate:

An OR gate is a logic circuit with two or more input

signals and one output signal. The output signal will be high

50

(logic 1) if any one input signal is high (logic 1). OR gate

performs logical addition.

The symbol for the logic OR gate is

 X

 OR X +

Y = Z

 Y

 Fig. 1

A circuit that will functions as an OR gate can be

implemented in several ways. A mechanical OR gate can be

fabricated by connecting two switches in parallel as shown in

figure 2

 Fig. 2

 X

 Y

 V =5v Z

Truth Table for a switch circuit operation as an OR gate.

Note that for the switch circuit were use diodes and

resistors, Transistors and resistors and other techniques to

control the voltage and resistance.

 Table.1

51

Note: If the switch is "on", it is represented by 1, and if, it is

"off", it is represented by 0. Truth Table for a Two-input OR

gate.

Table.2

In Put Out Put

X Y Z

0 0 0

0 1 1

1 0 1

1 1 1

Truth table for a three in put OR gate.

 Table .3

A B C X

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

Switch X Switch Y Output Z

Open Open 0

Open Closed 5V

Closed Open 5V

Closed Closed 5V

52

1 1 1 1

No. of combinations = 2 n, where n is number of variables.

AND Gate:

An AND gate is a logic circuit with two or

more input signals and one output signal. The output

signal of an AND gate is high (logic 1) only if all

inputs signals are high (Logic 1).

An AND gate performs logical multiplication on

inputs. The symbol for AND gate is

 X

 AND X.Y= Z

 Y

 Fig.3

A circuit that will functions as an AND gate can be

implemented in several ways. A mechanical AND gate can

be fabricated by connecting two switches in series as show

in fig. 4

 X Y

Fig.4

Truth Table for a switch circuit operation as an AND gate.

Table.4

53

Switch X Switch Y Output Z

Open Open 0

Open Closed 0

Closed Open 0

Closed Closed 5V

Truth table for a Two-input AND gate

Table. 5

In Put Out Put

X Y Z

0 0 0

0 1 0

1 0 0

1 1 1

Truth Table for a three input AND gate

 Table.6

Inputs Output

A B C X

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

54

1 0 1 0

1 1 0 0

1 1 1 1

1.4.5. Complementation

The logical operation of complementary or inverting a

variable is performed in the Boolean Algebra. The purpose

of complementation is to invert the, input signal, since there

are only two values that variables can assume in two-value

logic system, therefore if the input is 1, the output is 0 and

if the input is 0 the output is 1. The symbol used to

represent complementation of a variable is a bar (-) above

the variable, for example the complementation of A is

written as A and is read as “complement of A” or “A not”.

Since variables can only be equal to 0 or 1, we can say

that

 0 1= or 1 0=

 0 0= or 1 1=

Invertors Or NOT gate:

An inventor is a gate with only one input signal and

one output signal; the output signal is always the opposite or

complement of the input signal. An invertor is also called a

NOT gate because the output not the same as the input.

Symbol of inverter or NOT gate is

55

N

N

X

X X

Fig.5 (i)

X

X X=

Fig.5 (ii)

Fig.5(ii) (Two invertors in series)

The circle at the output or input indicates inversion. It also

distinguish between the symbol for the NOT gate or the

symbol for a operational amplifier or certain types of

buffers, because the symbol -►- can also be used for diode.

Truth Table for a NOT circuit

 Table.7

NOTE: A word is a group (or string) of binary bits that

represents a closed instruction or data.

Example 23

In put Out put

0 1

1 0

56

How many input words in the Truth Table of an 6 - input OR

gate? Which, input word produce a high output?

Solution

The total number of input words = 2n = 26 = 32, where n is

number of inputs. In an OR gate 1 or more-high inputs

produce a high output. Therefore the word of 000000 results

in low outputs all other input words produce a high output.

1.4.6. Basic Duality in Boolean Algebra

We state the duality theorem without proof. Starting with

a Boolean relation, we can derive another Boolean relation by

1. Changing each OR (+) sign to an AND (.) sign

2. Changing each AND (.) sign to an OR (+) sign.

3. Complementary each 0 and 1.

For instance

 A + 0 = A

The dual relation is A . 1 = A

Also since A (B + C) = AB + AC by distributive law. Its

dual relation is

 A + B C = (A + B) (A + C)

Fundamental Laws and Theorems of Boolean Algebra

1) OR operations

 X + 0 = X

57

 X + 1 = 1

 X + X = X

 X + X = 1

2) AND operations

 X . 0 = 0

 X . 1 = X

 X . X = X

 X . X = 0

3) Double complement

 X = X

4) Commutative laws

 X + Y = Y + X

 XY = YX

5) Associative laws

 (X + Y) +Z = X +(Y + Z)

 (X . Y). Z =X. (Y. Z)

6) Distribution Law

 X (Y + Z) = XY + XZ

7) Dual of Distributive Law

 X + Y .Z = (X + Y) . (X + Z)

8) Laws of absorption

 X + XZ = X

 X (1 + Z) = X.1=X

9) De Morgan's Theorems

58

 X + Y = Y X

 X Y = Y + X

Example 24

Find the complement of the expression: X + YZ and

verified the result by perfect induction.

X + YZ = X YZ

 =X (Y)Z



 +

by DeMorgan‟s Law this relation can be verified by perfect

induction.

Example 25

Express the Boolean function

 XY+YZ+ YZ XY Z= +

Solution

 L.H.S=

 XY+YZ+ Y

XY+(Y+ Y)

XY+1.

Z

Z

Z

=

=

 . .R H S=

59

Exercises 1.4

1) Simplify the Boolean expressions:

a) (X+Y)(X+Y)(X+Z)

b) XYZ+XYZ+XYZ

2) Write the Boolean expression that describes

mathematically the behavior of logic circuit shown in

figs

a)

b)

3) Prepare a truth table for the following Boolean

expression:

a) XYZ+XYZ

b) XY+XY

c) XYZ+XYZ+XYZ

60

4) Draw a logic circuit using only NOR gates for which the

output expression is X=AC+BC

5) Prove the following by use of a truth table:

 ABA+A ABC=A ABC B C+ +

6) Prove that

 1) A.B+A.B=A 2)

(A+B).(A+B)=A

61

Chapter 2

Induction and Recursion

2.1 Mathematical induction

Introduction

Suppose that we have an infinite ladder, as shown in Figure 1, and we want

to know whether we can reach every step on this ladder. We know two

things:

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we can reach

the next rung.

Can we conclude that we can reach every rung? By (1), we know

that we can reach the first rung of the ladder. Moreover, because

we can reach the first rung, by (2), we can also reach the second

rung; it is the next rung after the first rung. Applying (2) again,

because we can reach the second rung, we can also reach the

third rung. Continuing in this way, we can show that we can

reach the fourth rung, the fifth rung, and so on. For example,

after 100 uses of (2), we know that we can reach the 101st rung.

But can we conclude that we are able to reach every rung of this

infinite ladder? The answer is yes, something we can verify

using an important proof technique called mathematical

induction. That is, we can show that P (n) is true for every

positive integer n, where P (n) is the statement that we can reach

the nth rung of the ladder.

Mathematical induction is an extremely important proof

technique that can be used to prove assertions of this type. As

we will see in this section and in subsequent sections of this

chapter and later chapters, mathematical induction is used

extensively to prove results about a large variety of discrete

objects. For example, it is used to prove results about the

complexity of algorithms, the correctness of certain types of

62

computer programs, theorems about graphs and trees, as well as

a wide range of identities and inequalities.

In this section, we will describe how mathematical induction can

be used and why it is a valid proof technique. It is extremely

important to note that mathematical induction can be used only

to prove results obtained in some other way. It is not a tool for

discovering formulae or theorems.

FIGURE 1 Climbing an Infinite Ladder.

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P (n)

is true for all positive integers n, where P (n) is a propositional function, we

complete two steps:

BASIS STEP: We verify that P (1) is true.

INDUCTIVE STEP: We show that the conditional statement P(k) → P (k

+ 1) is true for all positive integers k.

63

To prove any relation by using mathematical induction

❖ Basis step

Prove the relation at n=1

❖ Inductive step

Assume the relation is true at n=k then Prove the relation at n=k+1

Ex 1 By using mathematical induction prove that.

𝟏 + 𝟐 + ⋯ + 𝒏 =
𝒏(𝒏 + 𝟏)

𝟐

Proof

❖ At n=1

𝐿. 𝐻. 𝑆 = 1

 𝑅. 𝐻. 𝑆 =
1(2)

2
= 1

𝑅. 𝐻. 𝑆 = 𝐿. 𝐻. 𝑆

❖ Assume the relation is true at 𝑛 = 𝑘

1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
 (1)

❖ At 𝑛 = 𝑘 + 1

𝑅. 𝐻. 𝑆 =
(𝑘 + 1)(𝑘 + 2)

2

𝐿. 𝐻. 𝑆1 + 2 + ⋯ + 𝐾 + 𝐾 + 1 𝑓𝑟𝑜𝑚(1)

𝐿. 𝐻. 𝑆
𝐾(𝐾 + 1)

2
+ 𝐾 + 1 =

𝐾(𝐾 + 1)(𝐾 + 2)

2
= 𝑅. 𝐻. 𝑆

Thus, the relation is true.

64

 Ex 2 By using mathematical induction prove that.

𝟏

𝟐!
+

𝟐

𝟑!
+

𝟑

𝟒!
+ ⋯ +

𝒏

(𝒏 + 𝟏)!
= 𝟏 −

𝟏

(𝒏 + 𝟏)!

Proof

❖ At 𝑛 = 1

𝐿. 𝐻. 𝑆 =
1

2!
=

1

2

𝑅. 𝐻. 𝑆 = 1 −
1

2
=

1

2

❖ Assume the relation is true at 𝑛 = 𝑘

1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑘

(𝑘 + 1)!
= 1 −

1

(𝑘 + 1)!
 (1)

❖ At 𝑛 = 𝑘 + 1

𝑅. 𝐻. 𝑆 = 1 −
1

(𝑘 + 2)!

𝐿. 𝐻. 𝑆 =
1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑘

(𝑘 + 1)!
+

𝑘

(𝑘 + 2)!
 𝑓𝑟𝑜𝑚 (1)

𝐿. 𝐻. 𝑆 = 1 −
1

(𝑘 + 1)!
+

𝑘 + 1

(𝑘 + 2)!
= 1 +

−(𝑘 + 2) + 𝑘 + 1

(𝑘 + 2)!

𝐿. 𝐻. 𝑆 = 1 +
−𝑘 − 2 + 𝑘 + 1

(𝑘 + 2)!
= 1 −

1

(𝑘 + 2)!
= 𝑅. 𝐻. 𝑆

Thus, the relation is true.

Ex 3 By using mathematical induction prove that.

𝟏 ∗ 𝟐 + 𝟐 ∗ 𝟑 + 𝟑 ∗ 𝟒 + ⋯ + 𝒏(𝒏 + 𝟏) =
𝒏(𝒏 + 𝟏)(𝒏 + 𝟐)

𝟑

Proof

❖ At 𝑛 = 1

𝐿. 𝐻. 𝑆 = 1(2) = 2

𝑅. 𝐻. 𝑆 =
1(2)(3)

3
= 2 = 𝐿. 𝐻. 𝑆

❖ Assume the relation is true at 𝑛 = 𝑘

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ⋯ + 𝑘(𝑘 + 1) =
𝑘(𝑘 + 1)(𝑘 + 2)

3

65

❖ At 𝑛 = 𝑘 + 1

𝑅. 𝐻. 𝑆 =
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3
 (1)

𝐿. 𝐻. 𝑆 = 1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ⋯ + 𝑘(𝑘 + 1) + (𝑘 + 1)(𝑘 + 2) 𝑓𝑟𝑜𝑚 (1)

𝐿. 𝐻. 𝑆 =
𝑘(𝑘 + 1)(𝑘 + 2)

3
+ (𝑘 + 1)(𝑘 + 2)

=
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3
= 𝑅. 𝐻. 𝑆

Thus, the relation is true.

Ex 4 Prove that the sum of the cubes of three consecutive natural

numbers divided by 9.

Proof

Let the numbers are 𝑛 , 𝑛 + 1 , 𝑛 + 2

𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3

❖ At 𝑛 = 1

13 + 23 + 33 = 36 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 9

𝑡ℎ𝑢𝑠 36
9⁄ = 4

❖ Assume the relation is true at 𝑛 = 𝑘

𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3

9
 (1)

❖ At 𝑛 = 𝑘 + 1

(𝑘 + 1)3 + (𝑘 + 2)3 + (𝑘 + 3)3

(𝑘 + 1)3 + (𝑘 + 2)3 + [𝑘3 + 9𝑘2 + 27𝑘 + 27]

(𝑘 + 1)3 + (𝑘 + 2)3 + 𝑘3 + [9𝑘2 + 27𝑘 + 27]

𝑓𝑟𝑜𝑚 (1) 𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3 𝑖𝑠 divided by 9 and

[9𝑘2 + 27𝑘 + 27] is divided by 9

The relation is true at 𝒏 = 𝒌 + 𝟏 thus the relation is true.

66

Ex 5 By using mathematical induction prove that.

[
𝟏 𝒙
𝟎 𝟏

]
𝒏

= [
𝟏 𝒏𝒙
𝟎 𝟏

]

Prof

❖ At 𝑛 = 1

𝐿. 𝐻. 𝑆 = [
1 𝑥
0 1

]

𝑅. 𝐻. 𝑆 = [
1 𝑥
0 1

]

𝑅. 𝐻. 𝑆 = 𝐿. 𝐻. 𝑆

❖ Assume the relation is true at 𝑛 = 𝑘

[
1 𝑥
0 1

]
𝑘

= [
1 𝑘𝑥
0 1

] (1)

❖ At 𝑛 = 𝑘 + 1)

𝑅. 𝐻. 𝑆 = [1 (𝑘 + 1)𝑥
0 1

]

𝐿. 𝐻. 𝑆 = [
1 𝑥
0 1

]
𝑘+1

= [
1 𝑥
0 1

]
𝑘

∗ [
1 𝑥
0 1

] 𝑓𝑟𝑜𝑚 (1)

𝐿. 𝐻. 𝑆 = [
1 𝐾𝑥
0 1

] [
1 𝑥
0 1

] = [
1 𝑘𝑥 + 𝑥
0 1

] = [1 (𝑘 + 1)𝑥
0 1

] = 𝑅. 𝐻. 𝑆

Thus, the relation is true.

Ex 6 By using mathematical induction prove that.

𝒙𝒏 − 𝒚𝒏 𝒅𝒊𝒗𝒊𝒔𝒂𝒃𝒍𝒆 𝒃𝒚 𝒙 − 𝒚

Proof

❖ At 𝑛 = 1

𝑥1 − 𝑦1 = 𝑥 − 𝑦 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑎𝑏𝑙𝑒 𝑏𝑦 𝑥 − 𝑦

❖ Assume that the relation is true at 𝑛 = 𝑘

𝑥𝑘 − 𝑦𝑘

𝑥 − 𝑦⁄ (1)

❖ At 𝑛 = 𝑘 + 1

𝑥(𝑘+1) − 𝑦(𝑘+1)

= 𝑥𝑘𝑥 − 𝑦𝑘𝑦 + 𝑥𝑘𝑦 − 𝑥𝑘𝑦

67

= 𝑥𝑘(𝑥 − 𝑦) − 𝑦(𝑥𝑘 − 𝑦𝑘) 𝑓𝑟𝑜𝑚 (1)

The first term is divisible by 𝒙 − 𝒚

The second term is divisible by 𝒙 − 𝒚

Thus, the relation is true.

Ex 7 By using mathematical induction prove that.

𝑺𝒏 = 𝟒𝒏 + 𝟏𝟓𝒏 − 𝟏 𝒊𝒔 𝒅𝒊𝒗𝒊𝒔𝒂𝒃𝒍𝒆 𝒃𝒚 𝟗

Proof

❖ At 𝑛 = 1

𝑆1 = 41 + 15(1) − 1 = 4 + 15 − 1 = 18
9⁄

❖ Assume that the relation is true at 𝑛 = 𝑘

𝑠𝑘 = 4𝑘 + 15𝑘 − 1
9⁄ (1)

❖ At 𝑛 = 𝑘 + 1

𝑠(𝑘+1) = 4(𝑘+1) + 15(𝑘 + 1) − 1

= 4 ∗ 4𝑘 + 15𝑘 + 14 = 4 ∗ 4𝑘 + (60𝑘 − 45𝑘) + (18 − 4)

= 4 ∗ 4𝑘 + 60𝑘 − 4) + (−45𝑘 + 18)

= 4(4𝑘 + 15𝑘 − 1) − 9(5𝑘 − 2)

The 1st term 4(4𝑘 + 15𝑘 − 1) is divisible by 9

from (1) and the 2nd is divisible by 9. Thus, the

relation is true.

Ex 8 Use the mathematical induction prove that.

𝑛3 − 𝑛 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3 𝑓𝑜𝑟 𝑛 ≥ 1

Proof

❖ At 𝑛 = 1

13 − 1 =
0

3
 𝑝(1)𝑡𝑟𝑢𝑒

❖ Assume that the relation is true at 𝑛 = 𝑘

𝑘3 − 𝑘 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3 𝑝(𝑘)𝑡𝑟𝑢𝑒

68

❖ At 𝑛 = 𝑘 + 1

𝑘3 − 𝑘 = 𝑘3 + 3𝑘2 + 3𝑘 + 1 − 𝑘 − 1

= (𝑘
3

− 𝑘) + 3 (𝑘
2

+ 𝑘)

The 1st term (𝑘
3

− 𝑘)is divisible by 3 from (1) and

the 2nd is divisible by 3. Thus, the relation is true.

2.2 Recursive Definitions

Introduction

Sometimes it is difficult to define an object explicitly.

However, it may be easy to define this object in terms

of itself. This process is called recursion. For instance,

the picture shown in Figure 2 is produced recursively.

First, an original picture is given. Then a process of

successively superimposing centered smaller pictures

on top of the previous pictures is carried out We can

use recursion to define sequences, functions, and sets.

and in most beginning mathematics courses, the terms

of a sequence are specified using an explicit formula.

For instance, the sequence of powers of 2 is given by

an = 2n for n = 0, 1, 2,.... Recall that we can also define

a sequence recursively by specifying how terms of the

sequence are found from previous terms. The sequence

of powers of 2 can also be defined by giving the first

term of the sequence, namely, a0 = 1, and a rule for

finding a term of the sequence from the previous one,

namely, an+1 = 2an for n = 0, 1, 2,… When we define a

sequence recursively by specifying how terms of the

sequence are found from previous terms, we can use

induction to prove results about the sequence.

69

FIGURE 2 A Recursively Defined Picture.

When we define a set recursively, we specify some

initial elements in a basis step and provide a rule for

constructing new elements from those we already have

in the recursive step. To prove results about recursively

defined sets we use a method called structural

induction.

Easy to define the object in terms of itself. The process of

defining an object in terms of itself.

Recursively defined function

• Basis step: the Value of the function at the first Point.

• Recursive step: specifying how terms in the function are

found from previous terms.

Ex 9 Use two steps to define a function with the set of non-negative

integers as it’s domain (0,1,2,3,4)

❖ Basis step 𝑓(0) = 0

❖ Recursive step 𝑓(𝑛 + 1) = 𝑓(𝑛) + 1 𝑛 ≥ 0

𝑜𝑟 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 𝑖𝑡 𝑎𝑠 𝑓(𝑛) = 𝑓(𝑛 − 1) + 1

70

Ex 10 The sequence of powers of 2 is given by 𝒂_𝒏 = 𝟐^𝒏 for n= 0,1,2,

3……

❖ 𝒂𝟎 = 𝟐𝟎 = 𝟏

❖ 𝒂𝟏 = 𝟐𝟏 = 𝟐

❖ 𝒂𝟐 = 𝟐𝟐 = 𝟒

❖ 𝒂𝒏+𝟏 = 𝟐 ∗ 𝒂𝒏 𝑹𝒆𝒄𝒖𝒓𝒔𝒊𝒗𝒆 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

Ex 11 Suppose that 𝑓 is defined recursively by

𝑓(0) = 3

𝑓(𝑛 + 1) = 2𝑓(𝑛) + 3 𝑓𝑖𝑛𝑑 𝑓(1), 𝑓(2), 𝑓(3)

𝑓(1) = 𝑓(0 + 1) = 2𝑓(0) + 3 = 2 ∗ 3 + 3 = 9

𝑓(2) = 𝑓(1 + 1) = 2𝑓(1) + 3 = 2 ∗ 9 + 3 = 21

𝑂𝑟 𝑓(2) = 𝑓(1 + 1) = 2𝑓(1) + 3 = 2 ∗ (2𝑓(0) + 3) + 3

= 4𝑓(0) + 6 + 3

= 4𝑓(0) + 9 = 4 ∗ 3 + 9 = 21

𝑓(3) = 𝑓(2 + 1) = 2𝑓(2) + 3 = 2 ∗ 21 + 3 = 42 + 3 − 45

Ex 12 Give a recursive definition of the factorial function 𝒏!

❖ 0! = 1

❖ 1! = 1 2! = 2 ∗ 1! 3! = 3 ∗ 2! 4! = 4 ∗

3! 5! = 5 ∗ 4!

❖ (𝑛 + 1)! = (𝑛 + 1) ∗ 𝑛! 𝑛! = 𝑛 ∗ (𝑛 − 1)!

Ex 13 The Fibonacci numbers 𝒇𝟎 = 𝟎 , 𝒇𝟏 = 𝟏 𝒂𝒏𝒅 𝒇𝒏 =

𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 find 𝒇𝟓 , 𝒇𝟒 , 𝒇𝟑 , 𝒇𝟐

For 𝒏 ≥ 𝟐

❖ 𝒇𝟐 = 𝒇𝟏 + 𝒇𝟎 = 𝟏 + 𝟎 = 𝟏

❖ 𝒇𝟑 = 𝒇𝟐 + 𝒇𝟏 = 𝟏 + 𝟏 = 𝟐

❖ 𝒇𝟒 = 𝒇𝟑 + 𝒇𝟐 = 𝟐 + 𝟏 = 𝟑

❖ 𝒇𝟓 = 𝒇𝟒 + 𝒇𝟑 = 𝟑 + 𝟐 = 𝟓

71

Ex 14 Give a recursive definition of ∑ 𝒂𝒌
𝒏
𝒌=𝟎

❖ ∑ 𝒂𝒌 = 𝒂𝟎
𝟎
𝒌=𝟎

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏
𝟏
𝒌=𝟎

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏
𝟐
𝒌=𝟎 + 𝒂𝟐

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏 + 𝒂𝟐
𝟑
𝒌=𝟎 + 𝒂𝟑

❖ ∑ 𝒂𝒌 = ∑ 𝒂𝒌
𝒏
𝒌=𝟎 + 𝒂𝒏+𝟏

(𝒏+𝟏)
𝒌=𝟎

Recursive Definitions: “another definition” play important role in

the study of strings (theory of formal language)

∑ 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ∑ 𝑖𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑟𝑦 𝑏𝑦

∑ = {𝑎, 𝑏, 𝑐, 𝑑, … … }

∑ = {1,2,3,4, … … }

∑ = ,أ} ,ب ,ت … … }

• Basis step:

𝜆𝜖 ∑∗

∗

 (𝑤ℎ𝑒𝑟𝑒 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜 𝑠𝑦𝑚𝑏𝑜𝑙𝑠)

• Recursive step

𝑖𝑓 𝜔 𝜖 ∑∗

∗

 , 𝑥 𝜖 ∑∗ ⇒ 𝜔𝑥 𝜖 ∑∗

∗

Ex 15 let ∑∗ = {0, 1}

∑∗

∗

= {𝜆, 0,1,00,01,10,001,110, … … }

𝜆𝜖 ∑∗

∗

 𝑏𝑎𝑠𝑖𝑠 𝑠𝑡𝑒𝑝

72

Let 00𝜖 ∑ ∗∗ , 1𝜖 ∑ ∗∗ ⇒

001𝜖 ∑ ∗∗ 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑠𝑡𝑒𝑝

Ex 16 let ∑ = {𝒂┤, ├ 𝒃} show that 𝒂𝒂𝒃𝝐∑^ ∗

Since 𝜆𝜖 ∑ ∗∗ 𝑎𝑛𝑑 𝑎 𝜖 ∑∗ ⇒ 𝜆𝑎𝜖 ∑ ∗∗ ⇒ 𝑎𝜖 ∑ ∗∗

𝑎𝜖 ∑∗

∗

𝑎𝑛𝑑 𝑎 𝜖 ∑∗ ⇒ 𝑎𝑎 𝜖 ∑∗

∗

𝑎𝑎 𝜖 ∑∗

∗

𝑎𝑛𝑑 𝑏 𝜖 ∑∗ ⇒ 𝑎𝑎𝑏 𝜖 ∑∗

∗

Ex 17 let ∑ be set of symbols, ∑ ∗∗ set of strings formed from symbols

in ∑

The concentration of two strings recursively as follow.

1. If 𝜔1𝜖 ∑ ∗∗ and 𝜔2𝜖 ∑ ∗∗ 𝑎𝑛𝑑 𝑥 𝜖 ∑∗ then

𝜔1(𝜔2𝑥) = (𝜔1𝜔2)𝑥

2. If 𝜔_1 =discrete, 𝜔_2 = mathematics 𝜔1𝜔2 =

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠

3. 𝜔1𝜔2 ≠ 𝜔2𝜔1

Ex 18 Give a recursive definition of (𝜔) [the length of the string 𝜔]

𝑙(𝜆) = 0

𝑙(𝜔𝑥) = 𝑙(𝜔) + 𝑙(𝑥) = 𝑙(𝜔) + 1

𝑖𝑓 𝜔 𝜖 ∑ ∗∗ , 𝑥 𝜖∑

Recursive Algorithm: Algorithm is called recursive if it

solves a problem by reducing it to an instance of the same

problem with smaller input.

Ex 19 Give a recursive algorithm for computing n! where n is non-

negative integer

0! =1 basis step

n! = n * (n+1)! Recursive step

73

recursive algorithm for computing n!

procedure factorial (n: non-negative integer)

if n=0 then return 1

else return n*factorial (n-1)

{output is n!}

Ex 4!

Ex 20 Give a recursive algorithm for computing an where n is non-zero

real number and n is non-negative integer.

 a0=1

a1=1 a1=a*a0

a2=a*a a2=a*a1

a3=a*a*a a3=a*a2

algorithm

procedure power (a: non-zero real number, n: non-negative integer)

if n=0 then return 1

else return a*power (a, n-1)

{output is an}

n return

4 4*f (3)

3 4*3*f (2)

2 4*3*2*f (1)

1 4*3*2*1*f (0)

0 4*3*2*1*1

74

Chapter 3

Number theory.

The part of mathematics devoted to the study of the set of integers

and their properties is known as number theory. In this chapter we

will develop some of the important concepts of number theory

including many of those used in computer science. As we develop

number theory, we will use the proof methods developed in Chapter

1 to prove many theorems.

We will first introduce the notion of divisibility of integers, which

we use to introduce modular, or clock, arithmetic. Modular

arithmetic operates with the remainders of integers when they are

divided by a fixed positive integer, called the modulus. We will

prove many important results about modular arithmetic which we

will use extensively in this chapter.

Integers can be represented with any positive integer b greater than

1 as a base. In this chapter we discuss base b representations of

integers and give an algorithm for finding them. In particular, we

will discuss binary, octal, and hexadecimal (base 2, 8, and 16)

representations. We will describe algorithms for carrying out

arithmetic using these representations and study their complexity.

These algorithms were the first procedures called algorithms.

We will discuss prime numbers, the positive integers that have only

1 and themselves as positive divisors. We will prove that there are

infinitely many primes; the proof we give is considered to be one of

the most beautiful proofs in mathematics. We will discuss the

distribution of primes and many famous open questions concerning

primes. We will introduce the concept of greatest common divisors

and study the Euclidean algorithm for computing them. This

75

algorithm was first described thousands of years ago. We will

introduce the fundamental theorem of arithmetic, a key result which

tells us that every positive integer has a unique factorization into

primes.

We will explain how to solve linear congruences, as well as systems

of linear congruences, which we solve using the famous Chinese

remainder theorem. We will introduce the notion of pseudoprimes,

which are composite integers masquerading as primes, and show

how this notion can help us rapidly generate prime numbers.

This chapter introduces several important applications of number

theory. In particular, we will use number theory to generate

pseudorandom numbers, to assign memory locations to computer

files, and to find check digits used to detect errors in various kinds

of identification numbers. We also introduce the subject of

cryptography. Number theory plays an essentially role both in

classical cryptography, first used thousands of years ago, and

modern cryptography, which plays an essential role in electronic

communication. We will show how the ideas we develop can be

used in cryptographical protocols, introducing protocols for sharing

keys and for sending signed messages. Number theory, once

considered the purest of subjects, has become an essential tool in

providing computer and Internet security.

3.1 Division

 if a, b are integers; a ≠ 0 then a divides b if

there an integer c such that 𝑏 = 𝑎 ∗ 𝑐
𝑏

𝑎
= 𝑐

Note a is factor of b. b is multiple of a

a/b a divides b a / b a not divide b

 a/b a divided by b

76

Ex 1 Determine whether 3\7 and 3\12 are divisible or not.

3 ∖ 7 ⇒
7

3
 ≠ 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑋

3 ∖ 12 ⇒
12

3
= 4 √

Ex 2 A number line indicates which integer are divisible by the +ve

integer d.

0

𝑑
= 0 𝑑 ∖ 0

±𝑘𝑑

𝑑
= ±𝑘 𝑑 ∖ ±𝑘𝑑

Ex 3 let n and d be +ve integers how many +ve integers not exceed

n are divisible by d?

? ?

𝑑
 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ? ? ≤ 𝑛 ⇒≫= 𝑘𝑑

0 < 𝑘𝑑 ≤ 𝑛 ; 𝑘𝜖𝑧+ 0 < 𝑘 ≤
𝑛

𝑑

𝑖𝑓
𝑛

𝑑
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 √

𝑖𝑓
𝑛

𝑑
 𝑛𝑜𝑡𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑋 ⟹ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

Number of +ve integers not exceeding n are divisible by d [n\d]

Note

Floor function ⌊𝑥⌋ approximate

to minimum

ceiling function ⌈𝑥⌉ approximate

to maximum

greatest integer function ([𝑥])

-3d -2d -d d 0 1 2

77

𝑥 ⌊𝑥⌋ ⌈𝑥⌉ ([𝑥])

2 2 2 2

2.001 2 3 2⇒ 2 ≤ 2.001 ≤ 3

2.4 2 3 2⇒ 2 ≤ 2.001 ≤ 3

-2.7 -3 -2 -3⇒ −3 ≤ −3 ≤ −3

-5 -5 -5 -5⇒ −5 ≤ −5 ≤ −5

Ex 4 how many +ve integers not exceeding 80 are divisible by 3?

0 < 𝑘𝑑 ≤ 𝑛

0 < 3𝑘 ≤ 80 ⇒ ⌊
80

3
⌋ = 26

0 < 𝑘 ≤
80

3
 ⇒

80

3
= 26.66667

Theorem: let a, b and c be integers where a ≠ 0, then

(i) 𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑎\𝑐 ⇒ 𝑎\(𝑏 + 𝑐)

(ii) 𝑖𝑓 𝑎\𝑏 ⇒ 𝑎\𝑏𝑐 , 𝑐 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

(iii)𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑏\𝑐 ⇒\𝑐

Result

𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑎\𝑐 ⇒ 𝑎\(𝑚𝑏 + 𝑛𝑐) , 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠

Ex 5 Does the following is true or not.

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4?
4

2
= 2 𝑡𝑟𝑢𝑒

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 8 ?
8

2
= 4 𝑡𝑟𝑢𝑒

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (4 + 8)?
(4+8)

2
= 6 𝑡𝑟𝑢𝑒

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4?
4

2
= 2 𝑡𝑟𝑢𝑒

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4 ∗ 5?
4∗5

2
= 10 𝑡𝑟𝑢𝑒

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4?
4

2
= 2 𝑡𝑟𝑢𝑒

• 4 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 16?
16

4
= 4 𝑡𝑟𝑢𝑒

78

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 16?
16

2
= 8 𝑡𝑟𝑢𝑒

The division algorithm: let a be integer, d be +ve integer, then
𝑎

𝑑
=

𝑞 a is dividend m d is divisor and q is quotient and r is reminder where

0 ≤ 𝑟 < 𝑑 𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑎 = 𝑑𝑞 + 𝑟

𝑟 = 𝑎 𝑚𝑜𝑑 𝑑

𝑟 = 𝑎 − 𝑑𝑞

Ex 6 what are the quotient and reminder when 101 is divided by

11.

𝑞 = ⌊
101

11
⌋ = 9 ⟹ 101 𝑑𝑖𝑣 11 = 9

𝑟 = 101 − 11 ∗ 9 = 2 ⟹ 101 𝑚𝑜𝑑 11 = 2

Ex 6 what are the quotient and reminder when -11 is divided by 3.

𝑞 = ⌊
−11

3
⌋ = −4 ⟹ −11 𝑑𝑖𝑣 3 = −4

𝑟 = −11 − 3 ∗ −4 = 1 ⟹ −11 𝑚𝑜𝑑 3 = 1

Ex 7 evaluates.

• 11 𝑚𝑜𝑑 2 = 1 ⇒
11

2
= 5 ⟹ 𝑟 = 11 − 2 ∗ 5 = 11 − 10 =

1

• −11 𝑚𝑜𝑑 2 = 1 ⇒
−11

2
= −5 ⟹ 𝑟 = −11 − 2 ∗ −5 =

−11 + 10 = 1

Note

• 𝑎\𝑏 ⟺ −𝑎\𝑏

79

Ex 8 Show that if a is an integer, then 𝟏\𝒂

𝑞 = ⌊
𝑎

1
⌋ = 𝑎

𝑟 = 𝑎 − 1 ∗ 𝑎 = 0 ⟹ 1\𝑎

Ex 9 Show that if a is an integer greater then 0, then 𝒂\𝟎

𝑞 = ⌊
0

𝑎
⌋ = 0

𝑟 = 0 − 𝑎 ∗ 0 = 0 ⟹ 𝑎\0

Modular arithmetic

 Ex 10 What time does a 24-hour clock read 100 hours after it

read 2:00

𝑟 = 102 𝑚𝑜𝑑 24 = 6

𝑟 = 102 − 24 ∗ 4 = 6

Relation between two integers have the same reminder.

Let 𝑎 𝑚𝑜𝑑 𝑚 = 𝑐 and

𝑏 𝑚𝑜𝑑 𝑚 = 𝑐

Found relation between a and b.

Definition: a, b are integers and m are +ve integers ⟹ a is

congruent to b model

1. 𝑎 𝑚𝑜𝑑 𝑚 = 𝑏 𝑚𝑜𝑑 𝑚 ⟺ 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚)

2. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⟺ 𝑚(𝑎 − 𝑏)

3. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⟺ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 𝑎 = 𝑏 + 𝑘𝑚

80

Ex 11 Decide whether each of these integers is congruent to 5

module 6

1. 17

2. 24

17 ≡ 5 (𝑚𝑜𝑑 6)

6\(17 − 5) =
17 − 5

6
= 2 𝑟 = 0

Or

17 𝑚𝑜𝑑 6 = 5 𝑟 = 17 − 6 ∗ 2 = 5

6 𝑚𝑜𝑑 5 = 5 𝑟 = 5 − 6 ∗ 0 = 5

24 ≡ 5 (𝑚𝑜𝑑 6)

Ex 12 list five integers that are congruent to 2 module to 4

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⟺ 𝑎 = 𝑏 + 𝑚𝑘

𝑎 − 𝑏

𝑚
=

𝑎 − 2

4
= 𝑘 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑎 − 2 = 4𝑘 ⇒ 𝑎 = 4𝑘 + 2

𝑘 𝑎

0 2

1 6

2 10

3 14

4 18

Ex 13 list all integers between -100 and 100 that are congruent to -

1 module 25

𝑎 ≡ −1(𝑚𝑜𝑑 25) ⟺ 𝑎 = −1 + 25𝑘

−100 < 𝑎 < 100

−100 < −1 + 25𝑘 < 100

81

−99 < 25𝑘 < 101

−3.96 < 𝑘 < 4.04

𝑘 = −3, −2, −1, 0, 1, 2, 3, 4

𝑎𝑡 𝑘 = −3 ⇒ 𝑎 = −1 + (25 ∗ −3) = −76

𝑎𝑡 𝑘 = 4 ⇒ 𝑎 = −1 + (25 ∗ 4) = 99

Ex 14 Suppose that a is integer 𝒂 ≡ 𝟒(𝒎𝒐𝒅 𝟏𝟑)

Find the integer C with 0 ≤ 𝐶 ≤ 12 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐 ≡ 9𝑎(𝑚𝑜𝑑 13)

Let

𝑎 ≡ 4(𝑚𝑜𝑑 13) ⟺ 𝑎 = 4 + 13𝑘

𝑘 = 0 ⇒ 𝑎 = 4

𝑘 = 1 ⇒ 𝑎 = 17

𝐶 = 9𝑎(𝑚𝑜𝑑 13)

𝐶 = 36(𝑚𝑜𝑑 13) = 10

𝐶 = 9 ∗ 17(𝑚𝑜𝑑 13) = 10

And so, on

Theorem: let m be +ve integer and let a, b, c, d are integers

𝑖𝑓 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚), 𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛)

𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑚)

𝑎 ∗ 𝑐 ≡ 𝑏 ∗ 𝑑(𝑚𝑜𝑑 𝑚)

Ex 15 𝟕 ≡ 𝟐(𝒎𝒐𝒅 𝟓)

𝟏𝟏 ≡ 𝟏(𝒎𝒐𝒅 𝟓)

𝟕 + 𝟏𝟏 ≡ (𝟐 + 𝟏)(𝒎𝒐𝒅 𝟓)

𝟕 ∗ 𝟏𝟏 ≡ (𝟐 ∗ 𝟏)(𝒎𝒐𝒅 𝟓)

82

Corollary (1): let m be +ve integer and let a, b are integers then.

(𝑎 + 𝑏)𝑚𝑜𝑑𝑚 = ((𝑎 𝑚𝑑 𝑚) + (𝑚𝑜𝑑 𝑚))

Ex 16 Evaluate

(−133 𝑚𝑜𝑑 23 + 261 𝑚𝑜𝑑 23)𝑚𝑜𝑑 23

= (−133 + 261)𝑚𝑜𝑑 23 = 128 𝑚𝑜𝑑 23 = 13

Corollary (2): let m be +ve integer and let a, b are integers then.

(𝑎𝑏)𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚)(𝑏 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚

𝑎2𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚)(𝑎 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚

𝑎4𝑚𝑜𝑑 𝑚 = ((𝑎2 𝑚𝑜𝑑 𝑚)(𝑎2 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚

Ex 17 Evaluate

(34𝑚𝑜𝑑17)2𝑚𝑜𝑑11

31𝑚𝑜𝑑17 = 3

32𝑚𝑜𝑑17 = 9

34𝑚𝑜𝑑17 = ((32𝑚𝑜𝑑 17) ∗ (32𝑚𝑜𝑑 17))𝑚𝑜𝑑17 = 81𝑚𝑜𝑑 17

= 13

132𝑚𝑜𝑑 11 = ((13 𝑚𝑜𝑑 11) ∗ (13 𝑚𝑜𝑑 11))𝑚𝑜𝑑 11

= 2 ∗ 2 𝑚𝑜𝑑 11 = 4 𝑚𝑜𝑑 11 = 4

Ex 18 Evaluate

511 𝑚𝑜𝑑12

51 ∗ 52 ∗ 58 𝑚𝑜𝑑12

51 𝑚𝑜𝑑12 = 5

52 𝑚𝑜𝑑12 = 25 𝑚𝑜𝑑 12 = 1

54 𝑚𝑜𝑑12 = 1 𝑚𝑜𝑑 12 = 1

83

58 𝑚𝑜𝑑12 = 1 𝑚𝑜𝑑 12 = 1

511 𝑚𝑜𝑑12 = 51 ∗ 52 ∗ 58 𝑚𝑜𝑑12 = 5 ∗ 1 ∗ 1 = 5

511 𝑚𝑜𝑑12 = 5

3.2 Integer representation: integer can be expressed using any integer

greater than one as

1. Decimal (base 10)

2. Binary (base 2)

3. Octal (base8)

4. Hexadecimal (base 16)

Theorem: base b expression of n

let b an integer >1 then n is a +ve integer, it can be

expressed uniquely in the form.

𝑛 = 𝑎𝑘𝑏𝑘 + 𝑎𝑘−1𝑏𝑘−1 + ⋯ + 𝑎1𝑏1 + 𝑎0𝑏0

(𝑎𝑘, 𝑎𝑘−1, 𝑎𝑘−2, … . , 𝑎1, 𝑎0)𝑏

Where k is a non-negative integers 𝑎𝑘, 𝑎𝑘−1, 𝑎𝑘−2, … . . , 𝑎1, 𝑎0 less

then b and 𝑎𝑘 ≠ 0

Example

(983)10 = 9 ∗ 102 + 8 ∗ 101 + 3 ∗ 103

Decimal expression: the decimal numbering system has 10

digits (0, 1, 2, …, 9)

Example 1223410 , 110010 , 3010

Binary expression: the binary notaton each digit is either 0

or 1

Example 111000101010102

Ex 19 what is the decimal expression of the integer has (10101)2 as

its binary expression.

84

 (10101)2= 1* 24 + 0*23 +1*22 + 0* 21 + 1*20 =21

(10101)2= (21)10

Octal (base 8) and Hexadecimal (base 16): expressing they

using characters, such as letters and digits

Octal expression base b=8

Octal digits used (0, 1, 2, 3, 4, 5, 6, 7) example 7658 , 4278

Ex 20 what is the decimal expression of (7016)8 as its octal

expression

(7016)8 = 7*83 +0*82+1*81+6*80=(3598)10

(7016)8 =(3598)10

hexadecimal expression base b=16

Hexadecimal digits used (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

example 7AC16 , 4FD16

Ex 21 what is the decimal expression of (2AE0B)16 as its

hexadecimal expression

(2AE0B)16 = 2*164+10*163 +14*162+0*161+11*160=(175627)10

Ex 22 Convert the following binary numbers to decimal

1. 0110102

0 1 1 0 1 0

25 24 23 22 21 20

0110102 = 1*24+1*23+1*21=(26)10

2. 100112

1 0 0 1 1

24 23 22 21 20

110011== 1*24+1*23+1*20=25

85

3. 10001.1012

1 0 0 0 1 1 0 1

24 23 22 21 20 2-1 2-2 2-3

10001.1012 = 1*24+1*20+1*2-1+1*2-3=17.625

Convert decimal to binary: it’s made by dividing on 2 and tack the

reminder

Ex Convert 7510 to binary.

(11)10 =??2

(11)10 =10112

Converting decimal and binary to hexadecimal table

Hexadecimal Decimal binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

75 2 1

37 2 1

18 2 0

9 2 1

4 2 0

2 2 0

1 2 1

0

11 2 1

5 2 1

2 2 0

1 2 1

0

86

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Ex 23Convert 5CA16 to binary

5CA16 = 0101110010102

Ex 23Convert C40E16 to binary

C 4 0 E

12 4 0 14

1100 0100 0000 1110

 C40E16 = 11000100000011102

Convert to binary.

• 10A716

• D85C16

Ex 20 Convert from binary to hexadecimal

11011000010111002

1. Divide each 4 digit as number 1101 1000 0101 1100

2. Convert each number separately.

11011000010111002= D85C16

1101 1000 0101 1100

13 8 5 12

D 8 5 C

87

Addition in binary

0+0=0

1+0=1

0+1=1

1+1=0 and reminder 1

Ex 21 Add 101100+11010.

1 1 1

1 0 1 1 0 0

1 1 0 1 0

1 0 0 0 1 1 0

Multiplication in binary

ab= 𝑎(𝑏020 + 𝑏121 + ⋯ + 𝑏𝑘2𝑘 = 𝑎𝑏020 + 𝑎𝑏121 + ⋯ + 𝑎𝑏𝑘2𝑘

Ex 22 Multiply 110 and 101

1 1 0

1 0 1

0 0 0 1 1 0

0 0 0 0

1 1 0

0 1 1 1 1 0

3.3 Primes: +ve integer p >1 is called prime if the only +ve

factor of P is 1 and P “if P is not prime called

composite”

Example

• 7 is prime
7

1
,

7

7

• 9 is composite
9

3
,

9

1
,

9

9

• 1 is not prime because it has only one +ve

factor.

88

• N is composite integer ⟺ an integer a ≡ a\n

1< a< n

Theorem “fundamental theorem of arithmetic”:

Every integer >1 can be written uniquely as a prime or as the

product of two or more primes. If n is composite integer, them n

equal to √𝑛

Example the integer 100 is prime or not.

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ √100 ⇒ 2, 3, 5, 7

100

2
 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 ⇒ 100 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 "compsit

Ex 23 the integer 101 is prime or not

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ √101 ⇒ 2, 3, 5, 7

101

2
 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟

101

3
 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟

101

5
 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟

101

7
 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟

 101 is a prime number.

89

Ex 24 Find the prime factorization of 100.

2 100

2 50

2 25

5 5

5 1

100 = 2 ∗ 2 ∗ 5 ∗ 5

Ex 25 Find the prime factorization of 1001.

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √1001 𝑎𝑟𝑒 2, 3, 5, 7, 11, 13, 17, ….

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √143 𝑎𝑟𝑒 2, 3, 5, 7, 11

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √13 𝑎𝑟𝑒 2, 3

1001=7*11*13

7 1001

11 143

13 13

1

3.4 Greatest common divisor “GCD”: let a and b be integers, not

booth zero the largest integer.

𝑑 ∋ 𝑑\𝑎, 𝑑\𝑏 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 gcd 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑏 gcd(𝑎, 𝑏)

𝑎 = 𝑃1
𝑎1 𝑃2

𝑎2 … . . 𝑃𝑛
𝑎𝑛

𝑏 = 𝑃1
𝑏 𝑃2

𝑏2 … . . 𝑃𝑛
𝑏𝑛

gcd(𝑎, 𝑏) = 𝑃1
min(𝑎1,𝑏1)

 , 𝑃2
𝑚𝑖𝑛(𝑎2,𝑏2)

, … … 𝑃𝑛
𝑚𝑖𝑛(𝑎𝑛,𝑏𝑛)

Ex 26 What is the greatest common divisor of 24, 36.

2 24 2 36

2 12 2 18

3 6 3 9

2 2 3 3

1 1

90

√24 𝑎𝑟𝑒 2,3 √36 𝑎𝑟𝑒 2,3

24 = 23 ∗ 31 36 = 22 ∗ 32

gcd(24,36) = 2min(3,2)
∗ 3min(1,2)

= 22 ∗ 31 = 4 ∗ 3 = 12

Ex 27 What is the greatest common divisor of , 500.

2 120 2 500

2 60 2 250

2 30 5 125

5 15 5 25

3 3 5 5

 1 1

√120 𝑎𝑟𝑒 2,3,5 √500 𝑎𝑟𝑒 2,5

120 = 23 ∗ 31 ∗ 51 500 = 22 ∗ 53

gcd(120,500) = 2min(3,2)
∗ 5

min(1,3)
= 22 ∗ 5

1
= 4 ∗ 5 = 20

Note: the integers a and b are relativity prime if their gcd is 1

Example 17 and 22 are relativity prime because the gcd (17,20) =1

The integers a1, a2,… an-1, an one pairwise relativity prime if gcd (ai, aj)=1

When ever 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

Ex 28

1. Found if the integers 10, 17, 21 pairwise relatively prime or

not.

2. Found if the integers 10, 19, 24 pairwise relatively prime or

not.

1. gcd (10, 17) =1

gcd (10, 21) =1

gcd (17, 21) =1

91

10, 17, 21 are pairwise relatively prime

2. gcd (10, 24) =2 ≠1

10, 19, 24 are not pairwise relatively prime

3.5 Least common multiple “LCM”: the least common multiple

of +ve integers a, b is the smallest +ve integer that is divisible by

both a and b

gcd(𝑎, 𝑏) = 𝑃1
max(𝑎1,𝑏1)

 , 𝑃2
max(𝑎2,𝑏2)

, … … 𝑃𝑛
max(𝑎𝑛,𝑏𝑛)

Example: found lcm of 24, 36 and 120, 500

𝑙𝑐𝑚(24,36) = 23 ∗ 32 = 8 ∗ 9 = 72

𝑙𝑐𝑚(120,500) = 23 ∗ 53 ∗ 31 = 8 ∗ 125 ∗ 3 = 3000

Theorem: let a, b +ve integers then ab=gcd (a, b) * lcm (a, b)

Methods of finding gcd

1. The Euclidean algorithm: let a=bq+r where a, b, q, r are integers

then

gcd (a, b) = gcd (b, r) if r=0, then gcd (a, b) = b

 Ex 29

Evaluate gcd (414, 662)

Assum that 414 is a and 662 is b

662

414
⟹ 𝑞 = 1, 𝑟 = 248

414

248
⟹ 𝑞 = 1, 𝑟 = 166

248

166
⟹ 𝑞 = 1, 𝑟 = 82

166

82
⟹ 𝑞 = 2, 𝑟 = 2

82

2
⟹ 𝑞 = 41, 𝑟 = 0

gcd (a, b) =gcd (662, 414) = gcd (b, r) =gcd (82, 2)=2

92

j rj rj+1 qj+1 rj+2

0 662 414 1 248

1 414 248 1 166

2 248 166 1 82

3 166 82 2 2

4 82 2 41 0

If r=0 gcd (a, b) =b=2

2. Bézout’s theorem: gcd (a, b) can be expressed as a linear

combination.

gcd (a, b) = Sa +tb

we set S0 =1 and S1=0 and t0 =0 and t1=1

Sj = Sj-2-qj-1 Sj-1

tj = tj-2-qj-1 tj-1

where j=2,3,….n

Ex 30

Evaluate gcd (252, 198) using Bézout’s theorem.

A b

j rj rj+1 qj+1 rj+2 Sj tj

0 252 188 1 54 1 0

1 198 54 3 36 0 1

2 54 36 1 18 1 -1

3 36 18 2 0 -3 4

4 4 -5

4a-5b=18

gcd (252, 198) = 18

3.6 Applications

1. Hashing function “Find the memory location “: h(k) = k mod m

Example: Find the memory location by the hashing fun h(k) = k mod

111 to the records of customer with social security number 064212848

and 037149212

h (064212848) = 064212848 mod 11= 14

93

h (037149212) = 037149212 mod 11= 65

2. Pseudorandom number its use in simulation and cryptography

Linear congruential method

𝑥𝑛+1 = (𝑎𝑥𝑛 + 𝑐)𝑚𝑜𝑑 𝑚

𝑥0 ⇒ 𝑠𝑒𝑒𝑑, 𝑎 ⇒ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝑐 ⇒ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 𝑚 ⇒ 𝑚𝑜𝑑𝑢𝑙𝑠

 Example m=9, a=7, c=4, x0=3

𝑥1 = (7𝑥0 + 4)𝑚𝑜𝑑 9 = 25 𝑚𝑜𝑑 9 = 7

𝑥2 = (7𝑥1 + 4)𝑚𝑜𝑑 9 = 53 𝑚𝑜𝑑 9 = 8

𝑥3 = (7𝑥2 + 4)𝑚𝑜𝑑 9 = 60 𝑚𝑜𝑑 9 = 6

𝑥9 = (7𝑥8 + 4)𝑚𝑜𝑑 9 = 39 𝑚𝑜𝑑 9 = 3

Then the numbers will repeat again so m must be great number to

prevent any when tp knew how large the cycle is

3. Cryptography

𝑓(𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 𝑚 𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

𝑓(𝑝) = (𝑝 − 𝑘)𝑚𝑜𝑑 𝑚 𝑑𝑦𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛

Where m: number of elements in the language used

Example To encrypt the message “stop global warming”.

m= 26 the number of English alphabet

use k =11

S T O P G L O B A L W A R M I N G

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6

𝑓(𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 𝑚

𝑓(18) = (18 + 11)𝑚𝑜𝑑 26

Repeat the iteration for every character the final is

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17

D E Z A R W Z M L W H L C X T Y R

94

Chapter 4

Graph theory.

Introduction

Graphs are discrete structures consisting of vertices and

edges that connect these vertices. There are different kinds

of graphs, depending on whether edges have directions,

whether. multiple edges can connect the same pair of

vertices, and whether loops are allowed. Problems in

almost every conceivable discipline can be solved using

graph models. We will give examples to illustrate how

graphs are used as models in a variety of areas. For

instance, we will show how graphs are used to represent

the competition of different species in an ecological niche,

how graphs are used to represent who influences whom in

an organization, and how graphs are used to represent the

outcomes of round-robin tournaments. We will describe

how graphs can be used to model acquaintanceships

between people, collaboration between researchers,

telephone calls between telephone numbers, and links

between websites. We will show how graphs can be used

to model roadmaps and the assignment of jobs to

employees of an organization.

Using graph models, we can determine whether it is

possible to walk down all the streets in a city without

going down a street twice, and we can find the number of

colors needed to color the regions of a map. Graphs can

be used to determine whether a circuit can be implemented

on a planar circuit board. We can distinguish between two

chemical compounds with the same molecular formula but

95

different structures using graphs. We can determine

whether two computers are connected by a

communications link using graph models of computer

networks. Graphs with weights assigned to their edges can

be used to solve problems such as finding the shortest path

between two cities in a transportation network. We can

also use graphs to schedule exams and assign channels to

television stations. This chapter will introduce the basic

concepts of graph theory and present many different graph

models. To solve the wide variety of problems that can be

studied using graphs, we will introduce many different

graph algorithms. We will also study the complexity of

these algorithms.

 4.1Graphs

Definition: a graph G = (V, E) consists of V (a non-empty set of

vertices) or nodes and E (a set of edges). Each edge has either

one or two vertices associated with it, called its endpoint an edge

is said to connect it’s endpoints.

Computer network

96

Remark

Finite graph

• Finite vertex set.

• Finite edge set

Infinite graph

• Infinite vertex set.

• Infinite edge set

Graph

Finite graph Infinet graph

97

Types of undirected graph

Simple graph: “each edge of the graph connects two different

vertices and where no two edge connect the same pair of

vertices.”

Multigraph: graphs that may multiple edges connecting the

same vertices”

Loop: “edge that connect a vertex to itself” self-edge.

98

Pseudo graph: graph that may include loop, and possibly

multiple edges connecting the same pair of vertices or a

vertex to itself.

Undirected graph

Directed graph: “digraph” (V, E) Consists of a nonempty set

of vertices V and a set of directed edges (arcs) E. Each edge

is associated with an ordered Pairs of vertices.

Simple directed graph: "when a directed graph has no loops

and has no multiple directed edges."

99

Directed multigraphs: have multiple directed edges from

vertex to a second Vertex (Possibly the same vertex)

Mixed graph: "For some models may need a graph where

some edges one undirected, while other one directed

Comparison between different type of graph

Type Edges Multi edges allow Loops allow

Simple graph Undirect X X

Multi graph Undirect √ X

Pseudo graph Undirect √ √

Simple direct Direct X X

Multi direct Direct √ √

Mixed graph Direct √ √

100

4.2 Graph models: graphs one used in a wide variety of

models.

❖ Social Networks.

❖ Communication

❖ Information

❖ Transportation

❖ Biological

❖ Software design Applications

❖ Tournaments.

❖ Other.

Social Networks

Social structures based on different kinds of relationships

between People or groups of People. acquaintanceship

and friendship Graphs (Simple graph) as Facebook

“virtual word”

Undirect simple graph

101

Inference graphs: In studies of group behavior, it is observed

that Certain People Con influence the thinking of others.

Simple direct graph

Collaboration Graphs: (Hollywood links graph)

Multiple graph with more than 2.9 million vertex till 2018

Communication Networks: “Call graphs” graphs can be used to

model telephone Calls made in a network.

Multi graphs

102

Transportation Networks: we can use graphs to model many

different types of transportation networks (road, air, shipping, _)

like underground metro network in Egypt.

Biological Networks: Many aspects of the biological sciences Can

be modeled using graphs. (Protein interaction graphic): A Protein

interaction in a living Cell occurs when two or more proteins in that

Cell bind to perform a biological function.

Semantic Networks: graphs models one used extensively in

natural language understanding (NLU). the subject of enabling

machine, to is assemble and Parse human speech Its, goal is to

allow machines to understand and communicate as human do.)

Software design Applications: graphs models one useful

tools in the design of software

(Modelle dependency graphs):

• how to structure a program into different Parts

• Understanding how the different modules of a program

interact

103

Web browser graph

Tournaments:

1. Round-robin tournament: each team plays every

other team exactly once and no draws one allowed.

104

Single-elimination tournament: each contestant is

eliminated after one lose.

Example (1): determine the type of the graphs.

105

Example (2): construct the intersection graph of these

collection of sets.

A1= {0, 2, 4, 6, 8}

A2= {0, 1, 2, 3, 4}

A3= {1, 3, 5, 7, 9}

A4= {5, 6, 7, 8, 9}

A1= {0, 1, 8, 9}

4.3 Basic graph terminology: two vertices U and V in an

undirected graph G are called adjacent (neighbors) in G if U

and V are endpoints of an edge e of G.

edge(e) is called incident with the vertices U and V

106

Neighborhood of Vertex (V) N(V): Set of all neighbors of

a vertex. V of G= (V, E)

❖ N(a)= {b, f)

❖ N (b)= {a, c, f, e)

❖ N(e)= {b, f, c}

❖ N(c)= {b, f, e, d}

❖ N(d)= {c}

❖ N(g)=ɸ

Remek: If A is subset of V, then the set of all Vertices in G

that are adjacent to at least one.

Vertex in A N(A)=U N(V) V€A

The degree of a vertex (undirected graph): it's the number of

edges incident with it, except that a loop at a vertex

contributes twice to the degree of that vertex.

❖ deg (a)=2

❖ deg (b)=4

❖ deg (e)=3

❖ deg (c)=4

❖ deg (d)=1

❖ deg (g)=0

107

Isolated: is a vertex of degree zero (is not adjacent to any

vertex) vertex g is isolated.

Pendant: A vertex is Pendant it and only if it has degree one.

Vertex d is Pendant.

Example what are the degrees and what are the neighborhoods

of the vertices in the following graph?

deg (a)= 4 deg (b)= 6 deg (c)= 1 Pendant deg(e)= 6

deg (g)= 0 Isolated deg (d)= 5

deg (a)= 6 deg (b)= 6 deg (c)= 6 deg(e)= 3 deg (d)= 5

The handshaking Theorem: Let G= (V, E) be undirected graph

with m edges. Then 2𝑚 = ∑ deg (𝑣)𝑣∈𝑉

108

Edge having two end Points and a handshake involving two

hands.

In exercise 1 ∑ deg(𝑣)𝑣∈𝑉 = 4 + 6 + 1 + 6 + 5 + 0 = 22

m=22/2 =11

Exercise How many edges one there in an undirected graph with

lo vertices Cach of degree six.

∑ deg(𝑣) = 10 ∗ 6 = 60

𝑣∈𝑉

𝑚(𝑒𝑑𝑔𝑒𝑠) =
60

2
= 30

Theorem An undirected graph has an even number of vertices

of odd degree.

Let V1 set of vertices of even degree = {b, c, d}

Let V2 set of vertices of odd degree = {a, e} 2𝑚 =

∑ deg (𝑣)𝑣∈𝑉

2𝑚 = ∑ deg(𝑣)

𝑣∈𝑉1

+ ∑ deg(𝑣)

𝑣∈𝑉2

109

Directed graphs: when (u, v) is an edge of the graph G with

directed edges.

 U adjacent to v

 V adjacent from u

Note initial and end of a loop are the same.

In-degree of a vertex deg-(v): is the number of edges with V as

their terminal vertex.

In-degree of a vertex deg+(v): is the number of edges with V as

their initial vertex.

Note loop at a vertex contributes 1 to both deg-(v) and deg+(v)

Exercise Calculate the number of vertices, number of edges, In-

degree of every vertex, and out-degree of every vertex.

110

Example

Number of vertex =6 number of edges =12

deg-(a) = 2 deg+(a) = 4

deg-(b) = 2 deg+(b) = 1

deg-(c) = 3 deg+(c) = 2

deg-(d) = 2 deg+(d) = 2

deg-(0) = 3 deg+(e) = 3

deg-(f) = 0 deg+(f) = 0

∑ 𝑑𝑒𝑔−(𝑣)

𝑣∈𝑉

= 12 ∑ 𝑑𝑒𝑔+(𝑣) = 12

𝑣∈𝑉

Theorem Let G= (V, E) be graph with directed edges. Then,

∑ 𝑑𝑒𝑔−(𝑣)

𝑣∈𝑉

= ∑ 𝑑𝑒𝑔+(𝑣) = |𝐸|

𝑣∈𝑉

111

Note

❖ null graph: a graph without any edge

❖ regular graph: a graph in which all vertices are of equal

degree.

Exercise Can a simple graph exist with 15 vertices each of degree

five?

2𝑚 = ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉

= 15 ∗ 5 = 75

𝑚 = |𝐸| = 37.5 𝑛𝑜𝑡 𝑠𝑖𝑚𝑝𝑙𝑒 𝑔𝑟𝑎𝑝ℎ

Simple graph m must be integer 0.5 means that there is loop

in the graph.

Exercise Find the number of vertices, edges, degree of each vertex

in the fllowing graphs:

112

4.4 Some special simple graphs:

1. Complete graph (Kn) n ≥ 1

Is the simple graph that contains one edge between each Pair of

distinct vertices.

2. Cycles: (Cn), n ≥ 3: The cycle Cn; n ≥ 3 Consists of n Vertices v1,

v2, …,vn and edges

{v1, v2}, {v2, v3}, ……. {vn-2, vn-1}, {vn-1, vn}

113

3. wheels: (Wn), n≥3: We obtain the wheel Wn when we add an

additional Vertex to the cycle Cn and connect this new vertex

to each of the n vertices in Cn by new edge.

4. n-Cubes (Qn): The n-dimensional hypercube (n-cube) Qn is the

graph that has vertices representing the 2n bit strings of length n.

Two vortices are adjacent if and only if the bit strings that they

represent differ in one exactly one-bit Position.

114

Bipartite graphs: if vertex ser V Can be Partitioned into two

disjoint sets V, and V₂ such that every edge in the graph Connects a

vertex in V1 and a Vertex in V2 (so that no edge in G connects two

vertices in V1, or two vertices in V₂)⇒ (V1,V2) a bipartition of the

vertex set V of G

Subgraph induced: Let G = (V, E) be a simple graph. The

subgraph induced by a Subset W of the vertex set V is the graph

(W, F), where edge Set F Contains an edge in E if and only if both

endpoints of this edge one in W.

H subgraph induced by W= {a, b, c, d}

115

Removing or adding edge of a graph

Removing G - {b, c}

Adding G + {e, d}

Removing vertices from graph

Removing vertex C

116

Edge contraction:

G contract by replacing {b, c} by F

Graph union.

V=V1 U V2

E= E1 U E2

117

Example: Determine whether the following graphs is bipartite

or not

C1 is not bipartite. C2 is bipartite. C3 is not bipartite.

Determining whether it is possible to assign either red or blue

to each Vertex So that no two adjacent Vertices are assigned

the same color.

In C3: V1 = {a, b, d} red color

 V2 = {c, e} blue color

So C3 is not bipartite.

118

Example: Determine whether the following graph is bipartite

or not

V1 = {a, c, e}

V2 = {b, d, f}

So, the graph is bipartite.

Example: Determine whether the following graph is bipartite

or not

The graph is not bipartite.

119

Complete bipartite graphs (Km,n): Is a graph that has it Vertex

Set Partitioned into two subsets of m and n vertices, respectively

with an edge between two vertices it and only if one vertex, is

in the first subset and the other is in the second subset.

K3,5 complete bipartite

K2,6 complete bipartite

120

A subgraph of graph G= (V, E): is a graph H= (W, F)

where𝑤 ≤ 𝑉

𝑎𝑛𝑑 𝐹 ≤ 𝐸.

A subgraph H of G is a proper subgraph of G if H # G

Original graph

Proper subgraph of K5

4.5 Representing graphs: There are many useful ways to

represent graphs. In working with a graph, it is helpful to be able

to choose its most appropriate representation. In this section, we

will show how to represent graphs in several different ways.

❖ using Representing graphs adjacency list.

❖ using Representing graphs adjacency matrix

❖ using Representing graphs incidence matrix

121

Adjacency list: Is a way to represent a graph with no multiple

edges, which specify the Vertices that are adjacent to each Vertex

of the graph.

Example Use adjacency list to describe the following simple

graph.

Adjacency matrix: let G= (V, E) is a simple graph, where |𝑣| =

𝑛. suppose that the Vertices of G ane listed arbitrarily as V1, V2,

….., Vn .

The adjacency matrix A (AG) of G with respect to this listing of

vertices is nxn zers-ore matrix with 1 as its (i, j) entry when Vi.

and VJ one adjacent, and o as its (i, j) entry when they are not

adjacent

A [aij] , where

𝑎𝑖𝑗 = {
1 𝑖𝑓 {𝑉𝑖 , 𝑉𝑗}𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐺

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Vertex Adjacent vertices

A b, c, e

B A

C a, e, d

D c, e

E a, c, d

122

Example use an adjacency matrix to represent the following

graph.

 a b c d

a

[

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

]
b

c

d

All undirected greatly have symmetric adjacency matrices.

Note Adjacency matrix of a graph is based on the ordering

chosen for the Vertices. Hence, there may be as many as n!

different adjacency matrices for a graph with Vertices.

Example adjacency matrices

123

Incidence Matrix: Let G = (V, E) be undirected graph.

Suppose that V1,V2,…,Vn are the vertices and e1,e2,…,en are the

edges of Go Then the incidence matrix w, r, t. this ordering of V

and E is the (n x m) matrix

M=[aij], where

𝑎𝑖𝑗 = {
1 𝑤ℎ𝑒𝑛 𝑒𝑑𝑔𝑒 𝑒𝑗𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑤𝑖𝑡ℎ 𝑠𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Example of incidence matrix of graph

Example (1)

124

Example (2)

125

References

1- Rowan Garnier and John Taylor, Discrete

Mathematics for New Technology, 2nd

Edition, Institute of Physics Publishing,

2001.

2- S. Lipschutz−M. L. Lipson, Schaum’s

Outline of Theory and Problems of Discrete

Math, 2004.

3-Kenneth H. Rosen, Discrete Mathematics

and Its Applications, 7th Edition, 2007.

