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I 

Introduction 

Discrete mathematics is a branch of mathematics that deals with mathematical 

structures and objects that are fundamentally discrete or distinct in nature. 

Unlike continuous mathematics, which focuses on concepts such as real 

numbers and continuous functions, discrete mathematics focuses on countable 

and finite sets, integers, graphs, and logical statements. 

    One of the fundamental concepts in discrete mathematics is set theory, 

which provides the foundation for many other areas. Sets are collections of 

distinct elements and are used to represent various mathematical objects. 

Operations such as union, intersection, and complementation are defined on 

sets. 

    Logic is also a fundamental component of discrete mathematics. It deals 

with the rules of reasoning and inference. Propositional logic focuses on the 

study of logical statements and their truth values, while predicate logic extends 

this to include quantifiers and predicates. Logic plays a crucial role in computer 

science, artificial intelligence, and mathematics itself. 

    Another important area of discrete mathematics is combinatorics, which 

studies counting, arrangement, and combination of objects. Combinatorics deals 

with topics such as permutations, combinations, and the binomial coefficient. It 

has applications in various fields, including computer science, cryptography, 

and probability theory. 

    Graph theory is another key topic in discrete mathematics. It studies the 

properties and relationships of graphs, which consist of vertices (nodes) and 

edges (connections between vertices). Graph theory is widely used in computer 

science, network analysis, and optimization problems. 

Discrete mathematics finds applications in various fields, including computer 

science, cryptography, operations research, and information theory. It provides 

the theoretical foundation for many computational algorithms, data structures, 

and optimization techniques. Overall, discrete mathematics is concerned with 

the study of discrete structures and provides a powerful toolkit for solving 

problems in various domains by employing rigorous mathematical reasoning 

and logical thinking. 
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Chapter One 

 

Sets, Functions, Relations, and Logic 

 

1.1. Set 

Set is one of the basic building blocks for the types of objects 

considered in discrete mathematics. It’s a basis for 

Mathematics pretty much all Mathematics can be formalized 

in Set Theory. Why is Set Theory important for Computer 

Science? It’s a useful tool for formalizing and reasoning 

about computation and the objects of computation. The 

concept of a set is so fundamental that we will not attempt to 

give it a precise definition. A set is a completely characterized 

by the elements it contains. 

There are two main ways of defining a set:  

(1)  By explicitly listing all its elements as: 

                  A = {a, i, e, o, u} Set of all vowels in the 

English alphabet. 

(2) By giving a property that all elements must satisfy 

as:  

                   E = {n ∈ N | n divides 2} set of natural 

numbers given by specifying a property. 

In some cases both methods can be used to define the same 

set, as in this example 
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                       { n ∈ N | n is odd  ∧   n2 + n   100} = {1, 3, 5, 

7, 9} 

Some Important Sets 

 N=natural numbers = {0, 1, 2, 3, …}.  

Z=integers numbers = {…, 3, 2, 1, 0, 1, 2, 3, …}. 

Z⁺= positive integers numbers = {1, 2, 3, …}.  

R=set of real numbers. 

 

To say that a certain object x is an element of a set S, 

we write x ∈ S.  To say that it isn’t an element of S we write 

x ∉ S. If every element of a set X is also an element of another 

set Y, then we say that X is a subset of Y and we write this 

symbolically as: X ⊆ Y.  

Formally, the subset relation is defined as follows: 

                        X ⊆ Y    ⇔    for every x 

∈ X ⇒ x ∈ Y. 

As example, here’s a couple of subsets of the sets A and E 

from above: 

                                                {a, i} ⊆ A 

                             {x ∈ N | n is a multiple of 4} ⊆ E 

There is a set that is contained in any other set:  the empty set, 

that is, the set with no elements.  We use the symbol ∅ for it:               

                                                  ∅ = { }. 
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It is always trivially true that ∅   X and also that X ⊆ X. 

Example 1 

The set of all real roots of the equation x2 - 2x - 3 = 0 is 

denoted by  

               {x: x is a real number & x2 - 2x - 3 = 0 } or  {-1, 3} 

Sometimes we shall define a set merely by listing its elements 

within braces:  

           {a, b, c, ..., h}. In particular, {b} is the set having b as 

its only member.  

Such a set {b} is called a singleton.  

The set {b, c} contains b and c as its only members, and,  

if b ≠ c, then {b, c} is called an unordered pair. Notice that 

{b, c} = {c, b}.  

 

Example 2 

The set of all real roots of the equation x2 - 3 = 0 is equal to 

the set { 3 ,- 3 }.  

We shall extend this method of denoting sets by listing a few 

elements of the set, followed by dots, in such a way as to 

indicate the characteristic property of the elements of the set.  

Example 3 

Let {1, 2, 3, 4, ... } is intended to represent the set of positive 

integers Z.  {1, 4, 9, 16, 25, ..., n2, ...} is the  set of squares of 

positive integers. When, we define a set by a property, we 
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should also clarify in advance what kind of objects we are 

talking about: in the examples above, we wrote n ∈ N to 

specify that we are talking about natural numbers.  This larger 

set, containing all the objects that we are interested in, is 

called the universal set or just the universe.  We will be using 

the letter U to denote the universal set. Sets can be combined 

and manipulated by using the operations of intersection, 

union, difference, complement.  

 

1.1.1. Set Equality 

Definition: Two sets are equal if and only if they have the 

same elements. Therefore if A and B are sets, then A and B 

are equal if and only if  

                          ( )x x A x B     

We write A= B if A and B are equal sets. 

                                     {1, 3, 5} = {3, 5, 1}. 

Here are their intuitive meaning and their rigorous 

mathematical definitions, assuming that S and T are any two 

sets: 

• Intersection S ∩ T: the elements that belong both to 

S and to T. 

S ∩ T = {x ∈ U | x ∈ S ∧ x ∈ T } 
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• Union S ∪ T: the elements that belong either to S or 

to T (or both). 

S ∪ T = {x ∈ U | x ∈ S ∨ x ∈ T} 

• Difference S-T: the elements that belong to S but not 

to T. 

S - T = {x ∈ U | x ∈ S ∧ x  T} 

• Complement S : elements (of the universe) that don’t 

belong to S. 

                              S  = {x ∈ U | x ∉ S} 

• Equality S=T:  The sets S and T are equal when and 

only when S and T have the same members.  

{Equality of S and T is designated in the usual way 

by S = T, and denial of this equality by ST} 

Example 4 

                  Let  a) {1, 2, 3} ∪ {1, 3, 4, 6} = {1, 2, 3, 4, 6}  

                         b) {a) ∪ {b} = {a, b}  

                           c)  {0, 2, 4, 6, 8, ... } ∪ {1, 3, 5, 7, 9, ...} = 

{0,1, 2, 3, 4, 5, ...} 

                         d) {1, 2, 3} ∩ {1, 3, 4, 6} = {1, 3}  

                         e)  {0, 1, 4, 7, 8} - {1, 3, 5, 7, 9} = {0, 4, 8} 

                         f) {1, 3, 5} ∩ {2, 4, 6} =   
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                         h)  0,  2,  4,  6,  8,  ...  = {1, 3, 5, 7, 9, ...} 

 

1.1.1. Venn Diagrams 

We can represent arbitrary sets pictorially by some 

drawings called Venn diagrams.  Sets are blobs that overlap 

each other.   Any region of the drawing can be characterized 

by some expression obtained by combining the sets by set 

operations 

 

1)                                                                            2) 

 

 

The shaded area represents A ∩ B                            The shaded 

area represents A ∪ B 

 

     3)               4)  

 

 

 

The shaded area represents A - B                              The shaded 

area represents A   

 

Venn diagram associated to an expression.  Given any 

expression combining variable names for sets using the 
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operators of intersection, union, difference and complement, 

we can draw a Venn diagram and identify on it the area 

associated with the given expression.  For example, here is a 

Venn diagram with a shaded area associated to the expression                

5) 

             (A∪C)-B 

 

 

 

 

1.1.2. Subsets  

Definition: The set A is a subset of B, if and only if every 

element of A is also an element of B.  

             The notation A  B is used to indicate that A is a 

subset of the set B. 

A    B holds if      ( )x x A x B  →  is true. 

The subset relation, , is a partial order relation on sets, 

that is, it satisfies the properties of reflexivity, antisymmetry 

and transitivity: 

• Reflexivity:    X    X 

• Antisymmetry:   (X     Y ) ∧ (Y     X) ⇒ X = Y 

• Transitivity:   (X    Y ) ∧ (Y     Z) ⇒ X    Z 
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It is clearly not total: given two sets, it is not necessary 

that one of the two is contained in the other one. A set can 

contain other sets, like a box containing smaller boxes.   

 

1.1.3. The algebra of sets 

The expressions obtained by combining sets by set 

operations form a kind of algebra.  To check what equalities 

hold in this algebra, we can use Venn diagrams.  Remember, 

however, that the diagrams are only intuitive drawings and 

they are not considered a proper proof. 

For example, we want to check if the following 

equality is true for all possible sets A, B and C: 

                                           A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ 

C). 

In other words:  does union distribute over intersection? 

Let’s construct two Venn diagrams depicting the left-hand 

and right-hand side of this equality, respectively: 

 

 

 

 

  shaded area:  A                      shaded  area:  B ∩ C                    

shaded  area: A ∪ (B ∩ C) 
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  shaded  area: A ∪ B                  shaded  area: A ∪ C              shaded 
area: (A∪ B) ∩ (A∪ C)  

 

We obtained the same area in the two diagrams for the two 

sides of the equality.  This tells us that the equality is 

probably true. 

This  was not a proper  proof:  Venn  diagrams  are  

only an  intuitive way to picture  sets,  they  do not  actually  

correspond  to the real  sets.   If we want to be mathematically 

sure of the equality, we must prove it rigorously from the 

definitions. 

 

Proof.  

Let’s unfold the definitions to check what it means to be an 

element of those two sets.  For every element x ∈ U we have 

that: 

                      x ∈ A ∪ (B ∩ C) ⇔ (x ∈ A) ∨ (x ∈ B ∩ C) 

                                                         ⇔ (x ∈ A) ∨ ((x ∈ B) ∧ (x 

∈ C)); 
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           x ∈ (A ∪ B) ∩ (A ∪ C) ⇔ (x ∈ A ∪ B) ∧ (x ∈ A ∪ 

C) 

                                                        ⇔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x 

∈ A) ∨ (x ∈ C)). 

But now, by distributive of disjunction over conjunction, we 

have that: 

(x∈ A) ∨ ((x ∈ B) ∧ (x ∈ C)) ⇔ ((x ∈ A) ∨ (x ∈ B)) ∧ ((x 

∈ A) ∨ (x∈ C)). 

 

If you’re  not  convinced  of this  step,  go back to  the  

rules  of Boolean  algebra. Check the rule of distributive of 

disjunction over conjunction and make the following 

substitutions: replace A by (x ∈ A), replace B by (x ∈ B) 

and replace C by (x ∈ C).  You will obtain exactly the 

equivalence above. 

If we put all the equivalences together, we obtain: 

x ∈ A ∪ (B ∩ C) ⇔ x ∈ (A ∪ B) ∩ (A ∪ C). 

This states that being an element of A∪ (B∩C) is equivalent 

to being an element of (A ∪ B) ∩ (A ∪ C).  

In conclusion:  A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).         

 

Example 5 
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                   Show that:  A ∩ (A ∪ B) = A.  

Let             A   (A ∪ B) then A ∩ A= A  

                     : hence A ∩ (A ∪ B) = A.   

 

Example 6  

           Show that:  A∪ (A∩B) = A.  

                              A∪ (A∩B) = (A∪A) ∩ (A∪B) = A ∩ 

(A∪B) = A 

Notice that we exploited the Boolean law of 

distributive of disjunction over conjunction to prove 

distributive of union over intersection.   This works because 

intersection was defined using conjunction and union was 

defined using disjunction.  It is a general pattern: all the rules 

of Boolean algebra give corresponding rules of set algebra.  

Complement corresponds to negation.  So if you take a 

Boolean equality, replace  

            Sign      ∧     by    ∩,             and sign ∨   by ∪ 

and    sing      ¬    by  .  ,    you obtain  a set equality. 

For example, the first De Morgan law becomes: 

                                            .A B A B=  

                                            .A B A B=  

Try to prove this equality formally, like we did above for 

distributive. 
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Example 7 

              Show that     A   B   if and only if  A ∩ B  =  .  

The cross hatched area is A ∩ B .  

To say that this is   is equivalent to saying that A is entirely 

within B.  

    

 

 

 

  A = A ∩ U = A ∩ (B ∪ B ) = (A ∩ B) ∪ (A ∩ B ) 

Hence if    (A ∩ B ) =   then A = A ∩ B; therefore,  

By using: A ∩ B = A if and only if A    B, and therefore  

           A ∩ B  = (A ∩ B) ∩ B  = A ∩ ( B∩ B )  = A∩ ( ) = 

  

 

Example 8  

Simplify   A B ∪ (B ∩ C) 

          A B ∪ (B ∩ C) = ( A B )  ∪ (B ∩ C) 

                             = A ∪ (B ∪ ( B ∩ C)) = A ∪ 

B 

 

1.1.4. Cartesian Product 
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Another important binary operation on sets is the 

Cartesian  Product:  given two sets  A and  B,  their  Cartesian  

product,  indicated  by A × B  is the set  of pair of elements 

from them.  If a ∈ A and b ∈ B, then we indicate by ,a b  

the pair that they form.  So we have: 

                                    A × B = { ,a b

| a ∈ A ∧ b ∈ B}. 

The order of the pair is important:  the same two elements 

may form two different pairs in inverse orders. 

For example, take the two sets to be: 

                            A = {apple, banana, cherry},        

                            B = {peach, banana, apple, 

strawberry}. 

Then, both ,apple banana  and ,banana apple are elements of 

A × B and they are considered different 

                                       ,apple banana ≠ ,banana apple  

Notice, in passing, that a pair like ,peach cherry  is not 

an element of the Cartesian product, because peach is not an 

element of A and also because cherry is not an element of B 

                             

,peach cherry ∉ A × B. 

On the other hand, the order of the elements is not important 

when we give a set by enumerating its elements.  In that case 



14 
 

we are only interested in what elements are in the set, not the 

way they are listed: 

                                  {apple, banana} = {banana, apple}, 

      {peach, banana, apple, strawberry} = {strawberry, peach, 

apple, banana}. 

 

Example 9 

If A = {1, 2} and B = {2, 3, 4}, then 

                           A × B = {(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), 

(2, 4)} 

Notice that Cartesian product is in general not commutative. 

In the case of the 

above example, we have: 

                           B × A = {(2, 1), (2, 2), (3, 1), (3, 2), (4, 1), 

(4, 2)} 

So, for instance, we have (1, 2) ∈ A × B and (1, 2) ∉ B × A. 

Example 10 

What is A × B × C where A = {0, 1}, B= {1,2} and C= {0, 

1, 2}  

Solution:  A× B × C={(0,1,0), (0,1,1), (0,1,2), 

(0,2,0),(0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), 

(1,2,1), (1,2,2)}. 
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1.1.5. Power Sets 

Definition: The set of all subsets of a set A, denoted P(A)  is 

called the power set of A. 

  

 

Example 11 

1)  A= {a, b} then P(A)={ø,{a},{b},{a, b}} 

2) B={apple, banana, cherry} then  

P (B) =∅, {apple}, {banana}, {cherry}, {apple, 

banana},  

             {apple,  cherry}, {banana, cherry},{apple, 

banana, cherry} 

 

1.1.6. Set Cardinality 

 

Definition: If there are exactly n distinct elements in S where 

n is a nonnegative integer, we say that S is finite. Otherwise 

it is infinite. 

Definition: The cardinality of a finite set A, denoted by |A|, 

is the number of distinct elements of A. 

 

Example 12 

1) A = {a, i, e, o, u}, then |A|= 5 
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2) B={ 

1, 2, 

3} 

then 

|B|= 3 

3)   , 

then |

 |= 0 

 

 

 

 

 

 

 

Exercises 

1.1 

 

1) List all subsets of the set {1, 2, 

3, 4}. 
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2) Prove that if A ⊆ B and B ⊆ C, 

then A ⊆ C. 

3) Let A = {x ∈ R | (x > 0) ∧ (x2 = 3)} Give a simpler 

definition of the set A. 

4) Draw a Venn diagram to illustrate the fact   A ∪ B ⊆ 

C. 

5) Prove the following statements: 

i) A ∩ ∅ = ∅            ii) A ∪ ∅ = A            iii) A ∩ A = A 

∪ A = A 

6) Prove the following: 

i) A ⊆ B iff A ∪ B = B.                            ii) A ⊆ B iff A 

∩ B = A. 

7) Prove the following: 

i) A - ∅ = A.                 ii) ∅ - A = ∅.                 iii) A - B 

= A ∩ B . 

8) Let A = {1, 3, 5}, B = {2, 4}. Find A × A, B × B, A × 

B, B × A. 

9) Use the set A={1, 2, 3, 4}to find 

a) Power of A                       b) |A| 
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1.2. Functions 

          A function between two sets is a rule or a 

correspondence that associates to every element of the first 

set a unique element of the second set. For example, consider 

a correspondence between a set of three people and a set of 

fruit; it’s a function that associates to every person her/his 

favorite fruit: 
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This defines a function; let’s call it favorite, between two sets.   

We use the following notation to denote this fact: 

favourite: {Anna, Brian, Carla} → {apple, banana, cherry, 

peach} 

          favourite (Anna) = banana 

         favourite (Brian) = peach  

         favourite(Carla) = apple 

The set from which the function starts is called its domain; 

the one where it arrives is called its codomain. 

When  the domain  is finite,  as  in  the example  above,  

we can  define  the function by just giving its values  on every 

element, as we did.  This is clearly impossible when the 

domain is an infinite set, for example the natural numbers. In 

that case the function needs to be defined by a formula or by 

some rule. Recursive definitions, which we studied a few 

lectures ago, are also a method to define a function. 

 

1.2.1. Injective Functions (one-one) 

We say that a function is injective if every element of 

the domain is associated to a different result, that is, if no two 

elements share the same result.  Formally we can define it as 

follows. Suppose 

                                     f : A → B 
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 f is injective     ⇔     x = y ⇒ f(x) = f(y) for all 

elements x, y ∈ A. 

The function favourite is injective because every 

person has a different favourite fruit.  It is very useful to apply 

the definition in the contrapositive way:  if two elements give 

the same result, then they must be equal. 

 

1.2.2. Surjective Functions (Onto) 

         We say that a function is surjective if every element 

of the codomain is the result of applying the function to 

some element of the domain, that is, if every element is 

the “target” of the function for some argument. 

Formally we can define it as follows. 

  f is surjective ⇔ for every b ∈ B there is some a ∈ A such 

that f(a) = b. 

The function favourite is NOT surjective because cherry is 

nobody’s favourite fruit. 

Consider instead the following function, going in the 

opposite direction which associates to every fruit the person 

that owns it: 

Owner: {apple, banana, cherry, peach} → {Anna, Brian, 

Carla} 

                 Owner (apple) = Anna ,                Owner (banana) 

= Carla  
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                Owner (cherry) = Anna,                Owner (peach) 

= Brian 

This function is in fact surjective:  every person owns at least 

one fruit.  On the other hand it is not injective:  when applied 

to apple and cherry it gives the same result, Anna. 

      f is injective     ⇔     f(x) = f(y) ⇒ x = y for all elements 

x, y ∈ A. 

1.2.3. Bijective Functions (one-one and onto) 

          A bijective function is one that is both injective and 

surjective.  Neither of the two functions defined above is 

bijective:   

favourite isn’t because it’s not surjective and owner isn’t 

because it’s not injective. Let’s consider the following 

function f that associates a number smaller than 4 to fruit: 

                     fn: { apple, banana, cherry, peach}→{0,1,2,3} 

                     fn (apple) = 2                    fn (banana) = 0  

                     fn (cherry) = 3                  fn (peach) = 1 

This function is injective (no two elements give the same 

result) and surjective (every number in the codomain is the 

result for some argument), therefore it is bijective. 

 

Example 13 
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Let f  be the function from {a, b, c, d} to {1, 2, 3} 

defined  by  

          f (a) =3,     f (b) =2, f (c) =1, and  f (d)= 3. 

 Is f onto function? 

Solution:  

Yes,  f  is onto since all three elements of the codomain 

are images of elements in the domain. If the codomain were 

changed to {1, 2 , 3, 4},  f  would not  be onto. 

Example 13 

Is the function f(x) = x2 from the set of integers to the set of 

integers onto? Solution:  

No, f is not onto because there is no integer x with x2 = −1, 

for example. 

Example 14 

Let’s look at three numerical functions now and 

determine which of the properties of injectivity, surjectivity 

and bijectivity they satisfy: 

 
f : N → N 

                         f (n) = 2 × n + 1 

 
This function is injective:   
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          Suppose f(n) = f(m),  that is, 2 × n + 1 = 2 × m + 1; 

simple  Arithmetic then tells us  that n  = m.    

On the other hand it is not surjective:  the values 0 and 2 (and 

all other even numbers) are not results of f. 

half : N → N         at     half(n) = n/2 

This  function is not injective:  half (0)  = 0 and  half (1)  = 0,  

so two distinct arguments  give  the same  result.   

But it  is surjective:   every  number  m  can be  obtained  as  

the result  of this  function  on  a  certain  argument,  by  taking 

n = 2 × m; 

              in fact, half (2 × m) = m. 

                                                    Swap : N → N 

                     Swap(n) = n + 1   if n is even 

                     Swap(n) = n − 1   if n is odd 

This function is both injective and surjective (I leave it to 

you to prove it). This fact can be clearly seen if we draw it 

using arrows 

 

 

 

 

 

1.2.4. Composition 
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Suppose we have two functions such that the codomain 

of the first coincides with the domain of the second:   

                      f : A →  B and  g : B →  C.   

We can compose them by applying one after the other:  

starting with an element of A we first compute f on it and then 

we compute g on the result that we obtained from the first 

step: 

                            
( ) ( ( ))

f gA B C

x f x g f x

⎯⎯→ ⎯⎯→

⎯⎯→ ⎯⎯→
 

The result is a function from A to C that we denote by 

g ◦f.  Attention:  the first function to be applied, f, is written 

to the right of the second to be applied, g. 

 

:

( )( ) ( ( ))

g f A C

g f x g f x

⎯⎯→

⎯⎯→
 

 

Example 15 

Let’s compute the composition of the favorite fruit and 

owner functions from above.   The  clearest  way  to do it  is 

to represent  them using  arrows  to show  the associations  

and  then  “follow the arrows”  to find the result  of the 

composition.   In our case we have:  

 A = {Anna, Brian, Carla}, B = {apple, banana, cherry, peach} 

and C = {Anna, Brian, Carla}. 
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Owner Favourite: {Anna, Brian, Carla} → {Anna, Brian, 

Carla} 

                  (owner  favourite)(Anna) = Carla  

                  (owner favourite)(Brian) = Brian 

                  (owner favourite)(Carla) = Anna 

For a numeric example, let’s  compose the two  

functions  f and  half on the natural numbers: 

                                half 

f : N → N 

                                (half  f) (n)  = (2 × n + 1)/2 

In this case the expression for the composition can be 

simplified: 

                                (half  f)(n)  = n. 

The simplest of all functions is the one that doesn’t do 

anything:  it gives as result the argument itself.  It is 

called the identity function: 

Id : A 

→ A 
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Id (a) = 

a 

Suppose we have two functions going in opposite 

directions:   

                                f : A → B and g : B →  A.   

We say that they are inverse of each other if both  

                  g   f = Id and f   g = Id.  

Be careful:  both compositions must be checked; in general 

they give different functions. In fact g   f is a function from 

A to A, while f   g is a function from B to B. 

 

For example  

we notice that,  

as above,                                 half   f = id. 

But if we compose the functions  the other  way  around  we 

don’t  get  the identity anymore.    

 

Example 16  

In the case of the function     f : R → R defined by f (x) = 2x 

+ 3, there is an inverse function, namely 

                                          g : R → R defined by g(x) = (x - 

3)/2. 

In the case of a function given in the form y = f (x), finding 
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an inverse amounts to “solving” for x. Thus, in the example 

above, if we express the original function f in the equational 

form   y = 2x + 3   then solving for x gives  

                                        x = (y - 3)/2 . 

In other words, the inverse function is the function 

                                g : R → R defined by g(y) =(y -3)/2.  

The only difference between this formulation of the 

definition of g and the first one is the use of x as the variable 

the first time, y the second time. In specifying a function, one 

is of course free to use any variable whatsoever, since the 

variable is just a kind of place marker, where particular 

arguments can be substituted in order to calculate the value. 

Since it is common to write real functions using x as variable, 

we first of all wrote the definition of g in terms of x. Another 

way of defining the notion of an inverse is that g is an inverse 

of a function         

                      f : A → B              iff           g : B → A  

And                g ◦ f = IdA             and            f ◦ g = IdB 

where IdA, IdB are the identity functions on A, B, 

respectively. 

 

Example 17 
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If   (f  half) (2) = 3. So half and f are not inverse of each 

other.  (We may still say that half is a left inverse of f and that 

f is a right inverse of half). 

                 If f : A → B has an inverse, this is denoted by f 

-1
. 

The most important fact about bijections is that they are 

exactly those functions that can be inverted. 

Theorem  

 The following equivalence is true for every function f : A 

→ B: 

             f is bijective     ⇔     f 

has an inverse. 

(We will not look at the proof of this theorem,  

                                    but you may want to try to give it 

yourself.) 

For example, we remarked earlier that the function fn 

is bijective.  It is easy to compute its inverse by associating to 

each number the fruit that’s mapped to it by fn: 

                   fn-1 : {0, 1, 2, 3} → {apple, banana, cherry, 

peach} 

                   fn-1 (0) = banana                     fn-1 (1) = 

peach 
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                 fn-1 (2) = apple                           fn-1 (3) = 

cherry. 

 

Example 18 

Let f and g be functions from the set of integers to the set of 

integers defined by 

                                  f(x) =2x+3 and g(x) =3x+2. 

What is the composition of f and g, and also the composition 

of g and f? 

Solution: 

f ◦ g (x) = f (g(x)) = f( 3x+2) = 2(3x+2)+3 = 6x+7 

g ◦ f (x) = g (f(x)) = g( 2x+3) = 3(2x+3) +2 = 6x+11 

 

Example 19 

Let f : Z→  Z be such that   f(x) = x + 1. Is f invertible, and 

if so, what is its inverse? 

Solution:  

The function f is invertible because it is a one to one 

correspondence. The inverse function      f-1 reverses the 

correspondence so f-1= y-1. 

 

Exercises 1.2 
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1) Let A = {1, 2}, B = {1, 2, 3}. List all the functions from A 

to B. 

 

2) Identify those functions in question (1) which are 

     (a) one-one                                       (b) onto                          

(c) bijective 

     In each case, identify the range of the function. 

 

3) Define       f : R → R by   

 

 

     Define     g : R → R by 

 

 

       Find formulas for the functions       g ◦ f      and      f ◦ g.  

       Use this example to show that g ◦ f = f ◦ g is not in 

general true. 

 

4) Define      f : R2 → R2                by    f (x, y) = (x + 2y, x - y).  

    Show that  f   is a bijection   and find f -1 
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1.3. 

Relations  

        A relation is a set of inputs and outputs, often written as 

ordered pairs (input, output). We can also represent a relation 

as a mapping diagram or a graph. For example, the relation 

can be represented as: 
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The following diagram shows some examples of relations and 

functions. Scroll down the page for more examples and 

solutions on how to determine if a relation is a function. 

 

1.3.1. Determining whether a relation is a function  

Understanding relations (defined as a set of inputs and 

corresponding outputs) is an important step to learning what 

makes a function. A function is a specific relation, and 

determining whether a relation is a function is a skill 

necessary for knowing what we can graph. Determining 

whether a relation is a function involves making sure that for 

every input there is only one output. 

 

How to determine if a relation is a function? 

A function is a correspondence between a first set, called the 

domain, and a second set, called the range, such that each 

member of the domain corresponds to exactly one member of 

the range. The graph of a function f is a drawing hat 
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represents all the input-output pairs, (x, f(x)). In cases where 

the function is given by an equation, the graph of a function 

is the graph of the equation 

                                                y = f(x). 

The vertical line test - a graph represents a function if it is 

impossible to draw a vertical line that intersects the graph 

more than once. 

In the above section dealing with functions and their 

properties, we noted the important property that all functions 

must have, namely that if a function does map a value from 

its domain to its co-domain, it must map this value to only 

one value in the co-domain. Writing in set notation, if a is 

some fixed value:  

                              |{f(x)|x=a}| ∈ {0, 1} 

The literal reading of this statement is: the cardinality 

(number of elements) of the set of all values f(x), such that x= 

a for some fixed value a, is an element of the set {0, 1}.  

In other words, the number of outputs that a function f 

may have at any fixed input a is either zero (in which case it 

is undefined at that input) or one (in which case the output is 

unique). However, when we consider the relation, we relax 

this constriction, and so a relation may map one value to more 

than one other value. In general, a relation is any subset of the 
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Cartesian product of its domain and co-domain. All functions, 

then, can be considered as relations also.  

Notations 

When we have the property that one value is related to 

another, we call this relation a binary relation and we write it 

as         

                                                x R y , where R is the relation.  

Example 20 

Let us examine some simple relations.   Say f is defined by  

            

{(0,0),(1,1),(2,2),(3,3),(1,2),(2,3),(3,1),(2,1),(3,2),(1,3)} 

This is a relation (not a function) since we can observe that 

1 maps to 2 and 3, for instance.  

Less-than, "<", is a relation also. Many numbers can be less 

than some other fixed number, so it cannot be a function.  

Definition 

A relation from a set A to a set B is a subset of A×B. Hence, 

a relation R consists of ordered pairs (a, b), where a∈A and 

b∈B. If (a,b) ∈R, we say that is related to , and we also write 

aRb. 
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Example 21 

                    Let           A={1,2,3,4,5,6}    and B={1,2,3,4}.  

Define (a, b) ∈R   if and only if (a−b) mod2 = 0.  

Then     

R={(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4),(5,1),(5,3),(6

,2),(6,4)}. 

We note that R consists of ordered pairs (a, b) where a and b 

have the same parity. Be cautious, that 1≤ a ≤ 6 and 1 ≤ b ≤ 

4.  

Hence, it is meaningless to talk about whether (1, 5) ∈R  or 

(1, 5) ∉R. 

1.3.2. Properties of Relations 

When we are looking at relations, we can observe some 

special properties different relations can have.  

 

1. Reflexive 

A relation is reflexive if, we observe that for all values a:  

                                                   a Ra 

In other words, all values are related to themselves.  

The relation of equality, "=" is reflexive. Observe that for, say, 

all numbers a (the domain is R):  

                                                     a = a 

so "=" is reflexive.  
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In a reflexive relation, we have arrows for all values in the 

domain pointing back to themselves:  

 

 

Note that ≤ is also reflexive (a ≤ a for any a in R). On the other 

hand, the relation < is not (a < a is false for any a in R).  

 

2.  Symmetric 

A relation is symmetric if, we observe that for all values of a 

and b:  

                                    a Rb    implies   b Ra 

The relation of equality again is symmetric. If x=y, we 

can also write that y=x also.  

In a symmetric relation, for each arrow we have also an 

opposite arrow, i.e. there is either no arrow between x and y, 

or an arrow points from x to y and an arrow back from y to x:  

 

Neither ≤ nor < is symmetric (2 ≤ 3 and 2 < 3 but neither 3 ≤ 

2 nor 3 < 2 is true).  

 

3. Transitive 

A relation is transitive if for all values a, b, c:  

                                   a Rb     and b R c    implies a R c 

https://commons.wikimedia.org/wiki/File:Arrow_diagram_reflexive.png
https://commons.wikimedia.org/wiki/File:Arrow_diagram_symmetric.png
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The relation greater-than ">" is transitive. If x > y, and 

y > z, then it is true that x > z. This becomes clearer when we 

write down what is happening into words. x is greater than y 

and y is greater than z. So x is greater than both y and z.  

The relation is-not-equal "≠" is not transitive. If x ≠ y 

and y ≠ z then we might have x = z or x ≠ z (for example 1 ≠ 

2 and 2 ≠ 3 and 1 ≠ 3 but 0 ≠ 1 and 1 ≠ 0 and 0 = 0).  

In the arrow diagram, every arrow between two values a and 

b, and b and c, has an arrow going straight from a to c.  

 

 

 

4. Antisymmetric 

A relation is antisymmetric if we observe that for all values a 

and b:  

                               a Rb   and    bRa implies that  a=b 

Notice that antisymmetric is not the same as "not symmetric."  

Take the relation greater than or equal to, "≥" If x ≥ y, and 

y ≥ x, then y must be equal to x. a relation is anti-symmetric 

if and only if a∈A, (a,a) ∈R . 

 

5. Trichotomy 

A relation satisfies trichotomy if we observe that for all values 

a and b it holds true that:                         

https://commons.wikimedia.org/wiki/File:Arrow_diagram_transitive.png
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                                       aRb    or     bRa  

The relation is-greater-or-equal satisfies since, given 2 

real numbers a and b, it is true that whether a ≥ b or b ≥ a 

(both if a = b).  

 

1.3.3. Operations on Relations 

There are some useful operations one can perform on 

relations, which allow to express some of the above 

mentioned properties more briefly.  

 

1. Inversion 

Let R be a relation, then its inversion, R-1 is defined by  

                  R-1 := {(a,b) | (b,a) in R}.  

 

2. Concatenation 

          Let R be a relation between the sets A and B, S be a 

relation between B and  C. We can concatenate these relations 

by defining  

             R • S := {(a,c) | (a,b) in R and (b,c) in S for some b 

out of B}  

 

3. Diagonal of a Set 

Let A be a set, then we define the diagonal (D) of A by  

                              D(A) := {(a,a) | a in A}  
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Shorter Notations 

Using above definitions, one can say ( lets assume R is a 

relation between A and B):  

R is transitive if and only if R • R is a subset of R.  

R is reflexive if and only if D(A) is a subset of R.  

R is symmetric if R-1 is a subset of R.  

R is antisymmetric if and only if the intersection of R and R-

1 is D(A).  

R is asymmetric if and only if the intersection of D(A) and R 

is empty.  

R is a function if and only if R-1 • R is a subset of D(B).  

In this case it is a function A → B. Let's assume R meets the 

condition of being a function, then  

R is injective if R • R-1 is a subset of D(A).  

R is surjective if {b | (a,b) in R} = B.  

1.4. Logic 

1.4.1. Truth Tables 

Since we have defined the logical connectives ∧, ∨, ¬, ⇒, ⇔ 

in terms of truth 

and falsity alone, and not to meaning, it is possible to 

represent (or illustrate) them by means of a table: a truth 

table. We introduce two symbols: T to denote “true” and F 
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to denote “false”. The behavior/definition of φ ∧ ψ can then 

be illustrated by the table: 

 

 

 

 

 

 

In the first two columns appear all the possible combinations 

of values of T and F that the two statements φ and ψ can have. 

In the third column we give the value φ ∧ψ achieves 

according to each assignment of T or F to φ and ψ. Thus, we 

see that φ ∧ ψ is T only when both φ and ψ are T. For φ ∨ ψ 

we have the table 
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Again, the definition of ¬φ can be represented thus: 

  

 

 

 

For φ ⇒ ψ we have: 

 

 

 

 

 

 

One can go on to construct truth tables for more complicated 

expressions. Consider, for example, the expression (φ ∧ ψ) ∨ 

(¬φ). We can build its table column by column as follows: 
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We can also draw up tables for expressions such as (φ ∧ ψ) ∨ 

θ, but if there 

are n constituent statements involved there will be 2n rows in 

the table, so already (φ ∧ ψ) ∨ θ needs 8 rows.  

Truth tables can be useful in checking that two rather 

complex statements are equivalent. For, by our definition of 

equivalence, two statements will be equivalent if they have 

the same truth table. For example, we can demonstrate the 

equivalence of ¬(φ ∧ ψ) and (¬φ) ∨ (¬ψ) as follows: 

 

 

 

 

 

 

Since the two columns marked * are identical, we know that 

the two expressions are equivalent. 

1.4.2. Contrapositives 

The contrapositive of a conditional φ ⇒ ψ is the 

conditional 

                                   ¬ ψ ⇒ ¬  φ 
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(Note that the introduction of the negation sign is 

accompanied by a change in the direction of the arrow.) 

For example, for the implication If 2n - 1 is prime, then n is 

prime the contrapositive implication is If n is composite (i.e., 

not prime), then 2n - 1 is composite. The following result is 

the logical basis for the mathematical concept of proof by 

contrapositive, where an implication is proved by 

establishing its contrapositive. 

 

 

 

1.4.3. 

Boolean 

Algebra 

The purpose of these notes is to introduce Boolean 

notation for elementary logic. In this version of things we use 

0 for F (False) and 1 for T (True). Negation is represented by 

placing a bar (or over line) across an expression. 

Thus we write 

  ∼ A =    A. 

The over line can go across a complex expression. Thus we 

have 

                                                ∼ (A ∨ B) =     A ∨ B. 
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In Boolean notation, we use multiplication for “and” and 

addition for ‘’ or’’  

Thus, we write 

                                   A ∨ B = A + B 

and we write 

                                A ∧ B = AB 

Note, for example, how DeMorgan’s   Law transcribes in the 

Boolean notation 

                                  ∼ (A ∨ B) = A B+ , 

                                  ∼ A ∧ ∼ B =   A B 

 

Remark on Boolean Arithmetic.  

The Boolean values of 0 and 1 form a very simple arithmetic 

with the following rules. 

1.     0 = 1 

2.     1 = 0 

     3.     0 + 0 = 0 

     4. 0 + 1 = 1 + 0 = 1 

     5. 1 + 1 = 1 (watch out for that one!) 

     6. 1 × 1 = 1 

     7. 0 × 0 = 0 × 1 = 1 × 0 = 0 

It is a remarkable fact that all the identities in basic 

logic and Boolean algebra are simply the identities that are 

true about this arithmetic. For example, the identity A= A 
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can be interpreted as saying that for any element A of the 

Boolean Arithmetic A= A. And you only have to check that 

this is true for A = 0 and for A = 1 to prove it. 

Note that in Boolean notation we have 

                          (A ⇒ B) = A B. 

This makes a compact notation for implication. 

Here is a list of identities that you are familiar with, 

written in Boolean notation. You can make these into 

exercises by either translating them into logic or set notation 

or seeing that they are true via truth tables or Venn diagrams 

or you can verify that they are true in Boolean arithmetic. 

1. A= A. 

2.  A + B = B + A 
3. (A + B) + C = A + (B + C) 

     4. AB = BA 

      5. (AB) C = A (BC) 

     6. A + A = A 

     7. 1 + A = 1 

      8. 0 + A = A 

     9. A + A =1 

   10. A A= 0 

   11. A (B + C) = AB + AC 

   12. A + BC = (A + B) (A + C) 
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   13. A+B= AB  

 

 

1.4.4. Fundamental Concepts of Boolean Algebra 

Boolean algebra is a logical algebra in which symbols 

are used to represent logic levels. Any symbol can be used; 

however, letters of the alphabet are generally used. Since the 

logic levels are generally associated with the symbols 1 and 

0, whatever letters are used as variables that can take the 

values of 1 or 0. Boolean algebra has only two mathematical 

operations, addition and multiplication. These operations are 

associated with the OR gate and the AND gate, respectively. 

 

 Logical Addition 

When the + (the logical addition) symbol is placed 

between two variables, say X and Y, since both X and Y can 

take only the role 0 and 1, we can define the + Symbol by 

listing, all possible combinations for X and Y and the 

resulting value of X + Y. The possible input and output 

combinations may arranged as follows: 

0 + 0  = 0 
0 + 1  =1 

1+ 0  = 1 
1 + 1  = 1 
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This table represents a standard binary addition, except for the 

last entry. When both' X and Y represents 1‟s, the value of X 

+ Y is 1. The symbol + therefore does not has the “Normal” 

meaning, but is a Logical addition symbol. The plus symbol 

(+) read as "OR", therefore X +Y is read as X or Y. 

This concept may be extended to any number of 

variables for example A + B + C +D = E Even if A, B, C and 

D all had the values 1, the sum of the values i.e. is 1. 

 

 

Logical Multiplication 

We can define the "."  (logical  multiplication) symbol  

or AND operator by listing all possible combinations for 

(input) variables X and Y and the resulting (output) value of 

X. Y as, 

0 .0= 0 
0 .1 = 0 
1 .0 = 0 
1 .1 = 1 

 

Note: Three of the basic laws of Boolean algebra are the same 

as in ordinary algebra; the commutative law, the associative 

law and the distributive law. 
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The commutative law:   

for addition and multiplication of two variables is written 

as, 

                      

                         A + B = B + 

A       

and                  A . B = B . A 

 

The associative law:   

for addition  and  multiplication  of  three variables is 

written as, 

                    (A + B) + C = A + (B + 

C)     

and               (A .B) . C = A. (B. C) 

 

The distributive law:  

for three variables involves, both addition and 

multiplication and is written as, 

                     A (B+ C) = A B + AC 

Note that while either '+' and „.‟ s can be used freely. The 

two cannot be mixed without ambiguity in the absence of 

further rules. 

 

Example 22 
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Does  

            A . B + C means (A . B) + C or A . (B+ C)?  

These two form different values for A = O, B = 1 and C = 1, 

because we have 

                     (A . B)  + C = (0.1) + 

1 = 1 

and                A . (B + C) = 0 . (1 + 1) = 0 

which are different. The rule which is used is that „.‟ is 

always performed before '+'. 

                Thus X.Y + Z is (X.Y) + Z. 

 

1.4.5   Logic Gates 

A logic gate is defined as an electronics circuit with 

two or more input signals and one output signal. The most 

basic logic Circuits are OR gates, AND gates, and invertors 

or NOT gates. Strictly speaking, invertors are not logic gates 

since they have only one input signal; however. They are 

best introduced at the same time as basic gates and will 

therefore be dealt in this section. 

 

OR Gate: 

An OR gate is a logic circuit with two or more input 

signals and one output signal. The output signal will be high 



50 
 

(logic 1) if any one input signal is high (logic 1). OR gate 

performs logical addition. 

The symbol for the logic OR gate is 

 

                        X 

                                                                  OR                 X + 

Y = Z 

                               Y 

                                  Fig. 1 

A circuit that will functions as an OR gate can be 

implemented in several ways. A mechanical OR gate can be 

fabricated by connecting two switches in parallel as shown in 

figure 2 

            Fig. 2       

                                                     X  

                           Y                                                                                 

 

                                    V =5v              Z 

 
 

Truth Table for a switch circuit operation as an OR gate.  

Note that for the switch circuit were use diodes and 

resistors, Transistors and resistors and other techniques to 

control the voltage and resistance. 

                                          Table.1 
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Note: If the switch is "on", it is represented by 1, and if, it is 

"off", it is represented by 0. Truth Table for a Two-input OR 

gate. 

Table.2 

In Put Out Put 

X Y Z 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

                                 

Truth table for a three in put OR gate. 

                                                 Table .3 

A B C X 

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 1 

Switch X Switch Y Output Z 

Open Open 0 

Open Closed 5V 

Closed Open 5V 

Closed Closed 5V 
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1 1 1 1 

No. of combinations = 2 n, where n is number of variables. 

AND Gate: 

An AND gate is a logic circuit with two or 

more input signals and one output signal. The output 

signal of an AND gate is high (logic 1) only if all 

inputs signals are high (Logic 1). 

An  AND  gate  performs  logical  multiplication  on  

inputs.  The symbol for AND gate is 

                                    X 

                                              AND                X.Y= Z 

                                  Y 

        Fig.3                                                   

A circuit that will functions as an AND gate can be 

implemented in several ways. A mechanical AND gate can 

be fabricated by connecting two switches in series as show 

in fig. 4 

                                                                    

                          X                   Y          

                      

 

Fig.4 

Truth Table for a switch circuit operation as an AND gate. 

Table.4 
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Switch X Switch Y Output Z 

Open Open 0 

Open Closed 0 

Closed Open 0 

Closed Closed 5V 

 

Truth table for a Two-input AND gate 

Table. 5 

In Put Out Put 

X Y Z 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 

Truth Table for a three input AND gate 

 Table.6 

Inputs Output 

A B C X 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 
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1 0 1 0 

1 1 0 0 

1 1 1 1 

1.4.5. Complementation 

The logical operation of complementary or inverting a 

variable is performed in the Boolean Algebra. The purpose 

of complementation is to invert the, input signal, since there 

are only two values that variables can assume in two-value 

logic system, therefore if the input is 1, the output is 0 and 

if the input is 0 the output is 1. The symbol used to 

represent complementation of a variable is a bar (-) above 

the variable, for example the complementation of A is 

written as A  and is read as “complement of A” or “A not”. 

Since variables can only be equal to 0 or 1, we can say 

that 

                          0 1=               or         1 0=  

                            0 0=               or          1 1=  

Invertors Or NOT gate: 

An inventor is a gate with only one input signal and 

one output signal; the output signal is always the opposite or 

complement of the input signal. An invertor is also called a 

NOT gate because the output not the same as the input. 

Symbol of inverter or NOT gate is 
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N 

 

N 

 
X 

 

X                           X 

Fig.5 (i) 

 

 

X                                                              

X X=     

Fig.5 (ii) 

 

Fig.5(ii) (Two invertors in series) 

The circle at the output or input indicates inversion.  It also 

distinguish between the symbol for the NOT gate or the 

symbol for a operational amplifier or certain types of 

buffers, because the symbol -►- can also be used for diode. 

Truth Table for a NOT circuit 

                                               Table.7 

 

 

 

NOTE: A word is a group (or string) of binary bits that 

represents a closed instruction or data. 

Example 23 

In put Out put 

0 1 

1 0 
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How many input words in the Truth Table of an 6 - input OR 

gate? Which, input word produce a high output? 

Solution 

The total number of input words = 2n   = 26 = 32, where n is 

number of inputs. In an OR gate 1 or more-high inputs 

produce a high output. Therefore the word of 000000 results 

in low outputs all other input words produce a high output. 

1.4.6.  Basic Duality in Boolean Algebra 

We state the duality theorem without proof.  Starting with 

a Boolean relation, we can derive another Boolean relation by 

1.  Changing each OR (+) sign to an AND (.) sign 

2.  Changing each AND (.) sign to an OR (+) sign. 

3.  Complementary each 0 and 1. 

For instance 

                                          A + 0 = A  

The dual relation is           A . 1 = A 

Also since A (B + C) = AB + AC by distributive law. Its 

dual relation is     

                            A + B C = (A + B) (A + C) 

Fundamental Laws and Theorems of Boolean Algebra 

1) OR operations 

           X   +    0 = X 
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           X  +    1 = 1 

          X  +   X  = X 

          X  +  X   = 1 

2) AND operations 

           X   .  0 = 0 

           X  . 1  = X 

           X  .  X = X 

           X .  X  = 0 

3) Double complement 

                 X = X      

4) Commutative laws 

             X + Y = Y + X 

             XY = YX 

5) Associative laws 

             (X + Y ) +Z = X +(Y + Z) 

             (X . Y). Z =X. (Y. Z) 

6) Distribution Law 

               X (Y + Z) = XY + XZ 

7) Dual of Distributive Law  

               X + Y .Z = (X + Y) . (X + Z) 

8) Laws of absorption  

                  X + XZ = X 

                  X (1 + Z) = X.1=X 

9) De Morgan's Theorems  



58 
 

                  X + Y = Y  X  

                  X  Y = Y + X  

 

Example 24 

Find the complement of the expression: X + YZ and 

verified the result by perfect induction.  

X + YZ = X  YZ

             =X  (Y )Z



 +
 

by DeMorgan‟s Law this relation can be verified by perfect 

induction. 

 

Example 25 

Express the Boolean function 

               XY+YZ+ YZ XY Z= +  

Solution 

         L.H.S=

   XY+YZ+ Y

XY+(Y+ Y)

XY+1.

Z

Z

Z

=

=

 

                      . .R H S=  
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Exercises 1.4 

1) Simplify the Boolean expressions: 

 

a) (X+Y)(X+Y)(X+Z)  

b) XYZ+XYZ+XYZ  

 

2) Write the Boolean expression that describes 

mathematically the behavior of logic circuit shown in 

figs 

  

a) 

 

b) 

           

3) Prepare a truth table for the following Boolean 

expression: 

a) XYZ+XYZ  

b) XY+XY  

c) XYZ+XYZ+XYZ  



60 
 

4) Draw a logic circuit using only NOR gates for which the 

output expression is X=AC+BC  

5) Prove the following by use of a truth table: 

                  ABA+A ABC=A ABC B C+ +  

 

6) Prove that 

     1) A.B+A.B=A                                  2) 

(A+B).(A+B)=A  
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Chapter 2 

Induction and Recursion 

2.1 Mathematical induction 

Introduction  

Suppose that we have an infinite ladder, as shown in Figure 1, and we want 

to know whether we can reach every step on this ladder. We know two 

things: 

1. We can reach the first rung of the ladder.

2. If we can reach a particular rung of the ladder, then we can reach

the next rung.

Can we conclude that we can reach every rung? By (1), we know

that we can reach the first rung of the ladder. Moreover, because

we can reach the first rung, by (2), we can also reach the second

rung; it is the next rung after the first rung. Applying (2) again,

because we can reach the second rung, we can also reach the

third rung. Continuing in this way, we can show that we can

reach the fourth rung, the fifth rung, and so on. For example,

after 100 uses of (2), we know that we can reach the 101st rung.

But can we conclude that we are able to reach every rung of this

infinite ladder? The answer is yes, something we can verify

using an important proof technique called mathematical

induction. That is, we can show that P (n) is true for every

positive integer n, where P (n) is the statement that we can reach

the nth rung of the ladder.

Mathematical induction is an extremely important proof

technique that can be used to prove assertions of this type. As

we will see in this section and in subsequent sections of this

chapter and later chapters, mathematical induction is used

extensively to prove results about a large variety of discrete

objects. For example, it is used to prove results about the

complexity of algorithms, the correctness of certain types of
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computer programs, theorems about graphs and trees, as well as 

a wide range of identities and inequalities. 

In this section, we will describe how mathematical induction can 

be used and why it is a valid proof technique. It is extremely 

important to note that mathematical induction can be used only 

to prove results obtained in some other way. It is not a tool for 

discovering formulae or theorems. 

 
FIGURE 1 Climbing an Infinite Ladder. 

PRINCIPLE OF MATHEMATICAL INDUCTION To prove that P (n) 

is true for all positive integers n, where P (n) is a propositional function, we 

complete two steps: 

BASIS STEP: We verify that P (1) is true. 

INDUCTIVE STEP: We show that the conditional statement P(k) → P (k 

+ 1) is true for all positive integers k. 
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To prove any relation by using mathematical induction 

❖ Basis step 

Prove the relation at n=1 

❖ Inductive step 

Assume the relation is true at n=k then Prove the relation at n=k+1 

Ex 1 By using mathematical induction prove that.  

𝟏 + 𝟐 + ⋯ + 𝒏 =
𝒏(𝒏 + 𝟏)

𝟐
 

Proof  

❖ At n=1  

𝐿. 𝐻. 𝑆 = 1 

 𝑅. 𝐻. 𝑆 =
1(2)

2
= 1 

𝑅. 𝐻. 𝑆 = 𝐿. 𝐻. 𝑆 

❖ Assume the relation is true at 𝑛 = 𝑘 

1 + 2 + ⋯ + 𝑘 =
𝑘(𝑘 + 1)

2
                                                                                     (1) 

❖ At 𝑛 = 𝑘 + 1 

𝑅. 𝐻. 𝑆 =
(𝑘 + 1)(𝑘 + 2)

2
 

𝐿. 𝐻. 𝑆1 + 2 + ⋯ + 𝐾 + 𝐾 + 1                                                        𝑓𝑟𝑜𝑚(1) 

𝐿. 𝐻. 𝑆
𝐾(𝐾 + 1)

2
+ 𝐾 + 1 =

𝐾(𝐾 + 1)(𝐾 + 2)

2
= 𝑅. 𝐻. 𝑆 

Thus, the relation is true. 
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 Ex 2 By using mathematical induction prove that.  

𝟏

𝟐!
+

𝟐

𝟑!
+

𝟑

𝟒!
+ ⋯ +

𝒏

(𝒏 + 𝟏)!
= 𝟏 −

𝟏

(𝒏 + 𝟏)!
 

Proof  

❖ At 𝑛 = 1 

𝐿. 𝐻. 𝑆 =
1

2!
=

1

2
 

𝑅. 𝐻. 𝑆 = 1 −
1

2
=

1

2
 

❖ Assume the relation is true at 𝑛 = 𝑘 

1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑘

(𝑘 + 1)!
= 1 −

1

(𝑘 + 1)!
                         (1) 

❖ At 𝑛 = 𝑘 + 1 

𝑅. 𝐻. 𝑆 = 1 −
1

(𝑘 + 2)!
 

𝐿. 𝐻. 𝑆 =
1

2!
+

2

3!
+

3

4!
+ ⋯ +

𝑘

(𝑘 + 1)!
+

𝑘

(𝑘 + 2)!
                𝑓𝑟𝑜𝑚 (1) 

𝐿. 𝐻. 𝑆 = 1 −
1

(𝑘 + 1)!
+

𝑘 + 1

(𝑘 + 2)!
= 1 +

−(𝑘 + 2) + 𝑘 + 1

(𝑘 + 2)!
 

𝐿. 𝐻. 𝑆 = 1 +
−𝑘 − 2 + 𝑘 + 1

(𝑘 + 2)!
= 1 −

1

(𝑘 + 2)!
= 𝑅. 𝐻. 𝑆 

Thus, the relation is true. 

Ex 3 By using mathematical induction prove that.  

𝟏 ∗ 𝟐 + 𝟐 ∗ 𝟑 + 𝟑 ∗ 𝟒 + ⋯ + 𝒏(𝒏 + 𝟏) =
𝒏(𝒏 + 𝟏)(𝒏 + 𝟐)

𝟑
 

Proof  

❖ At 𝑛 = 1 

𝐿. 𝐻. 𝑆 = 1(2) = 2 

𝑅. 𝐻. 𝑆 =
1(2)(3)

3
= 2 = 𝐿. 𝐻. 𝑆 

❖ Assume the relation is true at 𝑛 = 𝑘 

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ⋯ + 𝑘(𝑘 + 1) =
𝑘(𝑘 + 1)(𝑘 + 2)

3
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❖ At 𝑛 = 𝑘 + 1 

𝑅. 𝐻. 𝑆 =
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3
                        (1) 

𝐿. 𝐻. 𝑆 = 1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ⋯ + 𝑘(𝑘 + 1) + (𝑘 + 1)(𝑘 + 2)      𝑓𝑟𝑜𝑚 (1) 

𝐿. 𝐻. 𝑆 =
𝑘(𝑘 + 1)(𝑘 + 2)

3
+ (𝑘 + 1)(𝑘 + 2) 

=
(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)

3
= 𝑅. 𝐻. 𝑆 

Thus, the relation is true. 

Ex 4 Prove that the sum of the cubes of three consecutive natural 

numbers divided by 9.  

Proof  

Let the numbers are 𝑛 , 𝑛 + 1 , 𝑛 + 2 

𝑛3 + (𝑛 + 1)3 + (𝑛 + 2)3 

❖ At 𝑛 = 1 

13 + 23 + 33 = 36                   𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 9  

𝑡ℎ𝑢𝑠 36
9⁄ = 4  

❖ Assume the relation is true at 𝑛 = 𝑘 

𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3

9
                                                                      (1) 

❖ At 𝑛 = 𝑘 + 1 

(𝑘 + 1)3 + (𝑘 + 2)3 + (𝑘 + 3)3 

(𝑘 + 1)3 + (𝑘 + 2)3 + [𝑘3 + 9𝑘2 + 27𝑘 + 27] 

(𝑘 + 1)3 + (𝑘 + 2)3 + 𝑘3 + [9𝑘2 + 27𝑘 + 27] 

𝑓𝑟𝑜𝑚 (1) 𝑘3 + (𝑘 + 1)3 + (𝑘 + 2)3 𝑖𝑠 divided  by 9 and  

[9𝑘2 + 27𝑘 + 27] is divided by 9   

The relation is true at 𝒏 = 𝒌 + 𝟏 thus the relation is true. 
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Ex 5 By using mathematical induction prove that. 

[
𝟏 𝒙
𝟎 𝟏

]
𝒏

= [
𝟏 𝒏𝒙
𝟎 𝟏

] 

Prof  

❖ At 𝑛 = 1 

𝐿. 𝐻. 𝑆 = [
1 𝑥
0 1

] 

𝑅. 𝐻. 𝑆 = [
1 𝑥
0 1

] 

𝑅. 𝐻. 𝑆 = 𝐿. 𝐻. 𝑆 

❖ Assume the relation is true at 𝑛 = 𝑘 

[
1 𝑥
0 1

]
𝑘

= [
1 𝑘𝑥
0 1

]                                                                                      (1) 

❖ At 𝑛 = 𝑘 + 1) 

𝑅. 𝐻. 𝑆 = [1 (𝑘 + 1)𝑥
0 1

] 

𝐿. 𝐻. 𝑆 = [
1 𝑥
0 1

]
𝑘+1

= [
1 𝑥
0 1

]
𝑘

∗ [
1 𝑥
0 1

]                           𝑓𝑟𝑜𝑚 (1) 

𝐿. 𝐻. 𝑆 = [
1 𝐾𝑥
0 1

] [
1 𝑥
0 1

] = [
1 𝑘𝑥 + 𝑥
0 1

] = [1 (𝑘 + 1)𝑥
0 1

] = 𝑅. 𝐻. 𝑆 

Thus, the relation is true. 

Ex 6 By using mathematical induction prove that. 

𝒙𝒏 − 𝒚𝒏 𝒅𝒊𝒗𝒊𝒔𝒂𝒃𝒍𝒆 𝒃𝒚 𝒙 − 𝒚 

Proof  

❖ At 𝑛 = 1 

𝑥1 − 𝑦1 = 𝑥 − 𝑦 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑎𝑏𝑙𝑒 𝑏𝑦 𝑥 − 𝑦 

❖ Assume that the relation is true at 𝑛 = 𝑘 

 

𝑥𝑘 − 𝑦𝑘

𝑥 − 𝑦⁄                                                                                                    (1) 

❖ At 𝑛 = 𝑘 + 1 

𝑥(𝑘+1) − 𝑦(𝑘+1) 

= 𝑥𝑘𝑥 − 𝑦𝑘𝑦 + 𝑥𝑘𝑦 − 𝑥𝑘𝑦 
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= 𝑥𝑘(𝑥 − 𝑦) − 𝑦(𝑥𝑘 − 𝑦𝑘)   𝑓𝑟𝑜𝑚 (1) 

The first term is divisible by 𝒙 − 𝒚 

The second term is divisible by 𝒙 − 𝒚 

Thus, the relation is true.  

Ex 7 By using mathematical induction prove that.  

𝑺𝒏 = 𝟒𝒏 + 𝟏𝟓𝒏 − 𝟏 𝒊𝒔 𝒅𝒊𝒗𝒊𝒔𝒂𝒃𝒍𝒆 𝒃𝒚 𝟗 

Proof  

❖ At 𝑛 = 1 

𝑆1 = 41 + 15(1) − 1 = 4 + 15 − 1 = 18
9⁄  

❖ Assume that the relation is true at 𝑛 = 𝑘 

𝑠𝑘 = 4𝑘 + 15𝑘 − 1
9⁄                                                                           (1) 

❖ At 𝑛 = 𝑘 + 1 

𝑠(𝑘+1) = 4(𝑘+1) + 15(𝑘 + 1) − 1 

= 4 ∗ 4𝑘 + 15𝑘 + 14 = 4 ∗ 4𝑘 + (60𝑘 − 45𝑘) + (18 − 4)

= 4 ∗ 4𝑘 + 60𝑘 − 4) + (−45𝑘 + 18) 

= 4(4𝑘 + 15𝑘 − 1) − 9(5𝑘 − 2) 

 

The 1st term 4(4𝑘 + 15𝑘 − 1) is divisible by 9 

from (1) and the 2nd is divisible by 9. Thus, the 

relation is true. 

Ex 8 Use the mathematical induction prove that.  

𝑛3 − 𝑛 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3  𝑓𝑜𝑟 𝑛 ≥ 1  

Proof  

❖ At 𝑛 = 1 

13 − 1 =
0

3
          𝑝(1)𝑡𝑟𝑢𝑒  

❖  Assume that the relation is true at 𝑛 = 𝑘 

𝑘3 − 𝑘 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 3    𝑝(𝑘)𝑡𝑟𝑢𝑒 
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❖ At 𝑛 = 𝑘 + 1

𝑘3 − 𝑘 = 𝑘3 + 3𝑘2 + 3𝑘 + 1 − 𝑘 − 1

= (𝑘
3

− 𝑘) + 3 (𝑘
2

+ 𝑘)

The 1st term (𝑘
3

− 𝑘)is divisible by 3 from (1) and

the 2nd is divisible by 3. Thus, the relation is true. 

2.2 Recursive Definitions 

Introduction  

Sometimes it is difficult to define an object explicitly. 

However, it may be easy to define this object in terms 

of itself. This process is called recursion. For instance, 

the picture shown in Figure 2 is produced recursively. 

First, an original picture is given. Then a process of 

successively superimposing centered smaller pictures 

on top of the previous pictures is carried out We can 

use recursion to define sequences, functions, and sets. 

and in most beginning mathematics courses, the terms 

of a sequence are specified using an explicit formula. 

For instance, the sequence of powers of 2 is given by 

an = 2n for n = 0, 1, 2,.... Recall that we can also define 

a sequence recursively by specifying how terms of the 

sequence are found from previous terms. The sequence 

of powers of 2 can also be defined by giving the first 

term of the sequence, namely, a0 = 1, and a rule for 

finding a term of the sequence from the previous one, 

namely, an+1 = 2an for n = 0, 1, 2,… When we define a 

sequence recursively by specifying how terms of the 

sequence are found from previous terms, we can use 

induction to prove results about the sequence. 
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FIGURE 2 A Recursively Defined Picture. 

When we define a set recursively, we specify some 

initial elements in a basis step and provide a rule for 

constructing new elements from those we already have 

in the recursive step. To prove results about recursively 

defined sets we use a method called structural 

induction.  

Easy to define the object in terms of itself. The process of 

defining an object in terms of itself. 

Recursively defined function 

• Basis step: the Value of the function at the first Point. 

• Recursive step: specifying how terms in the function are 

found from previous terms. 

Ex 9 Use two steps to define a function with the set of non-negative 

integers as it’s domain (0,1,2,3,4) 

❖ Basis step 𝑓(0) = 0 

❖ Recursive step 𝑓(𝑛 + 1) = 𝑓(𝑛) + 1  𝑛 ≥ 0 

𝑜𝑟 𝑤𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 𝑖𝑡 𝑎𝑠  𝑓(𝑛) = 𝑓(𝑛 − 1) + 1 
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Ex 10 The sequence of powers of 2 is given by 𝒂_𝒏 = 𝟐^𝒏  for n= 0,1,2, 

3…… 

❖ 𝒂𝟎 = 𝟐𝟎 = 𝟏 

❖ 𝒂𝟏 = 𝟐𝟏 = 𝟐 

❖ 𝒂𝟐 = 𝟐𝟐 = 𝟒 

❖ 𝒂𝒏+𝟏 = 𝟐 ∗ 𝒂𝒏                  𝑹𝒆𝒄𝒖𝒓𝒔𝒊𝒗𝒆 𝒇𝒐𝒓𝒎𝒖𝒍𝒂 

Ex 11 Suppose that 𝑓 is defined recursively by  

𝑓(0) = 3 

𝑓(𝑛 + 1) = 2𝑓(𝑛) + 3                                     𝑓𝑖𝑛𝑑 𝑓(1), 𝑓(2), 𝑓(3) 

𝑓(1) = 𝑓(0 + 1) = 2𝑓(0) + 3 = 2 ∗ 3 + 3 = 9 

𝑓(2) = 𝑓(1 + 1) = 2𝑓(1) + 3 = 2 ∗ 9 + 3 = 21 

𝑂𝑟 𝑓(2) = 𝑓(1 + 1) = 2𝑓(1) + 3 = 2 ∗ (2𝑓(0) + 3) + 3

= 4𝑓(0) + 6 + 3 

= 4𝑓(0) + 9 = 4 ∗ 3 + 9 = 21 

𝑓(3) = 𝑓(2 + 1) = 2𝑓(2) + 3 = 2 ∗ 21 + 3 = 42 + 3 − 45 

Ex 12 Give a recursive definition of the factorial function 𝒏! 

❖ 0! = 1 

❖ 1! = 1          2! = 2 ∗ 1!           3! = 3 ∗ 2!           4! = 4 ∗

3!                  5! = 5 ∗ 4! 

❖ (𝑛 + 1)! = (𝑛 + 1) ∗ 𝑛!                                      𝑛! = 𝑛 ∗ (𝑛 − 1)! 

Ex 13 The Fibonacci numbers 𝒇𝟎 = 𝟎 , 𝒇𝟏 = 𝟏          𝒂𝒏𝒅 𝒇𝒏 =

𝒇𝒏−𝟏 + 𝒇𝒏−𝟐 find 𝒇𝟓 , 𝒇𝟒 , 𝒇𝟑 , 𝒇𝟐    

For 𝒏 ≥ 𝟐 

❖ 𝒇𝟐 = 𝒇𝟏 + 𝒇𝟎 = 𝟏 + 𝟎 = 𝟏 

❖ 𝒇𝟑 = 𝒇𝟐 + 𝒇𝟏 = 𝟏 + 𝟏 = 𝟐 

❖ 𝒇𝟒 = 𝒇𝟑 + 𝒇𝟐 = 𝟐 + 𝟏 = 𝟑 

❖ 𝒇𝟓 = 𝒇𝟒 + 𝒇𝟑 = 𝟑 + 𝟐 = 𝟓 
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Ex 14 Give a recursive definition of  ∑ 𝒂𝒌
𝒏
𝒌=𝟎  

❖ ∑ 𝒂𝒌 = 𝒂𝟎
𝟎
𝒌=𝟎  

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏
𝟏
𝒌=𝟎  

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏
𝟐
𝒌=𝟎 + 𝒂𝟐 

❖ ∑ 𝒂𝒌 = 𝒂𝟎 + 𝒂𝟏 + 𝒂𝟐
𝟑
𝒌=𝟎 + 𝒂𝟑 

❖ ∑ 𝒂𝒌 = ∑ 𝒂𝒌
𝒏
𝒌=𝟎 + 𝒂𝒏+𝟏

(𝒏+𝟏)
𝒌=𝟎  

Recursive Definitions: “another definition” play important role in 

the study of strings (theory of formal language) 

∑ 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 ∑ 𝑖𝑠𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒𝑟𝑦 𝑏𝑦 

∑ = {𝑎, 𝑏, 𝑐, 𝑑, … … } 

∑ = {1,2,3,4, … … } 

∑ = ,أ} ,ب  ,ت  … … } 

• Basis step:   

𝜆𝜖 ∑∗

∗

  (𝑤ℎ𝑒𝑟𝑒 𝜆 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 𝑛𝑜 𝑠𝑦𝑚𝑏𝑜𝑙𝑠) 

• Recursive step  

𝑖𝑓 𝜔 𝜖 ∑∗

∗

 , 𝑥 𝜖 ∑∗ ⇒ 𝜔𝑥 𝜖 ∑∗

∗

 

Ex 15 let ∑∗ = {0, 1} 

∑∗

∗

= {𝜆, 0,1,00,01,10,001,110, … … } 

𝜆𝜖 ∑∗

∗

        𝑏𝑎𝑠𝑖𝑠 𝑠𝑡𝑒𝑝 
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Let 00𝜖 ∑ ∗∗   , 1𝜖 ∑ ∗∗   ⇒

001𝜖 ∑ ∗∗                                𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 𝑠𝑡𝑒𝑝    

Ex 16 let ∑ = {𝒂┤, ├ 𝒃} show that 𝒂𝒂𝒃𝝐∑^ ∗ 

Since  𝜆𝜖 ∑ ∗∗ 𝑎𝑛𝑑 𝑎 𝜖 ∑∗ ⇒   𝜆𝑎𝜖 ∑ ∗∗ ⇒  𝑎𝜖 ∑ ∗∗  

𝑎𝜖 ∑∗

∗

𝑎𝑛𝑑 𝑎 𝜖 ∑∗ ⇒  𝑎𝑎 𝜖 ∑∗

∗

 

𝑎𝑎 𝜖 ∑∗

∗

𝑎𝑛𝑑 𝑏 𝜖 ∑∗ ⇒  𝑎𝑎𝑏 𝜖 ∑∗

∗

 

Ex 17 let ∑ be set of symbols, ∑ ∗∗  set of strings formed from symbols 

in ∑  

The concentration of two strings recursively as follow. 

1. If 𝜔1𝜖 ∑ ∗∗  and 𝜔2𝜖 ∑ ∗∗ 𝑎𝑛𝑑 𝑥 𝜖 ∑∗ then  

𝜔1(𝜔2𝑥) = (𝜔1𝜔2)𝑥 

2. If 𝜔_1 =discrete, 𝜔_2 = mathematics  𝜔1𝜔2 =

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠 

3. 𝜔1𝜔2 ≠ 𝜔2𝜔1 

Ex 18 Give a recursive definition of (𝜔) [the length of the string 𝜔] 

𝑙(𝜆) = 0 

𝑙(𝜔𝑥) = 𝑙(𝜔) + 𝑙(𝑥) = 𝑙(𝜔) + 1   

𝑖𝑓 𝜔 𝜖 ∑ ∗∗  , 𝑥 𝜖∑ 

Recursive Algorithm: Algorithm is called recursive if it 

solves a problem by reducing it to an instance of the same 

problem with smaller input.  

Ex 19 Give a recursive algorithm for computing n! where n is non-

negative integer  

0! =1 basis step 

n! = n * (n+1)! Recursive step 
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recursive algorithm for computing n! 

procedure factorial (n: non-negative integer) 

if n=0 then return 1 

else return n*factorial (n-1) 

{output is n!} 

Ex 4!  

 

Ex 20 Give a recursive algorithm for computing an where n is non-zero 

real number and n is non-negative integer.  

 a0=1 

a1=1  a1=a*a0 

a2=a*a  a2=a*a1 

a3=a*a*a a3=a*a2 

algorithm  

procedure power (a: non-zero real number, n: non-negative integer) 

if n=0 then return 1 

else return a*power (a, n-1) 

{output is an} 

n return 

4 4*f (3) 

3 4*3*f (2) 

2 4*3*2*f (1) 

1 4*3*2*1*f (0) 

0 4*3*2*1*1 
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Chapter 3 

Number theory. 

The part of mathematics devoted to the study of the set of integers 

and their properties is known as number theory. In this chapter we 

will develop some of the important concepts of number theory 

including many of those used in computer science. As we develop 

number theory, we will use the proof methods developed in Chapter 

1 to prove many theorems. 

We will first introduce the notion of divisibility of integers, which 

we use to introduce modular, or clock, arithmetic. Modular 

arithmetic operates with the remainders of integers when they are 

divided by a fixed positive integer, called the modulus. We will 

prove many important results about modular arithmetic which we 

will use extensively in this chapter. 

Integers can be represented with any positive integer b greater than 

1 as a base. In this chapter we discuss base b representations of 

integers and give an algorithm for finding them. In particular, we 

will discuss binary, octal, and hexadecimal (base 2, 8, and 16) 

representations. We will describe algorithms for carrying out 

arithmetic using these representations and study their complexity. 

These algorithms were the first procedures called algorithms. 

We will discuss prime numbers, the positive integers that have only 

1 and themselves as positive divisors. We will prove that there are 

infinitely many primes; the proof we give is considered to be one of 

the most beautiful proofs in mathematics. We will discuss the 

distribution of primes and many famous open questions concerning 

primes. We will introduce the concept of greatest common divisors 

and study the Euclidean algorithm for computing them. This 
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algorithm was first described thousands of years ago. We will 

introduce the fundamental theorem of arithmetic, a key result which 

tells us that every positive integer has a unique factorization into 

primes. 

We will explain how to solve linear congruences, as well as systems 

of linear congruences, which we solve using the famous Chinese 

remainder theorem. We will introduce the notion of pseudoprimes, 

which are composite integers masquerading as primes, and show 

how this notion can help us rapidly generate prime numbers. 

This chapter introduces several important applications of number 

theory. In particular, we will use number theory to generate 

pseudorandom numbers, to assign memory locations to computer 

files, and to find check digits used to detect errors in various kinds 

of identification numbers. We also introduce the subject of 

cryptography. Number theory plays an essentially role both in 

classical cryptography, first used thousands of years ago, and 

modern cryptography, which plays an essential role in electronic 

communication. We will show how the ideas we develop can be 

used in cryptographical protocols, introducing protocols for sharing 

keys and for sending signed messages. Number theory, once 

considered the purest of subjects, has become an essential tool in 

providing computer and Internet security.

3.1 Division 

 if a, b are integers; a ≠ 0 then a divides b if 

there an integer c such that 𝑏 = 𝑎 ∗ 𝑐 
𝑏

𝑎
= 𝑐 

Note a is factor of b. b is multiple of a  

a/b a divides b a / b a not divide b 

  a/b a divided by b 
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Ex 1 Determine whether 3\7 and 3\12 are divisible or not.  

3 ∖ 7 ⇒
7

3
                                        ≠ 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟      𝑋 

3 ∖ 12 ⇒
12

3
= 4                                                                √ 

Ex 2 A number line indicates which integer are divisible by the +ve 

integer d. 

      

      

      

      
0

𝑑
= 0                                     𝑑 ∖ 0 

±𝑘𝑑

𝑑
= ±𝑘                                     𝑑 ∖ ±𝑘𝑑 

Ex 3 let n and d be +ve integers how many +ve integers not exceed 

n are divisible by d?  

? ?

𝑑
 𝑖𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ? ? ≤ 𝑛 ⇒≫= 𝑘𝑑 

0 < 𝑘𝑑 ≤ 𝑛     ; 𝑘𝜖𝑧+                           0 < 𝑘 ≤
𝑛

𝑑
 

𝑖𝑓 
𝑛

𝑑
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟              √ 

𝑖𝑓 
𝑛

𝑑
 𝑛𝑜𝑡𝑖𝑛𝑡𝑒𝑔𝑒𝑟              𝑋 ⟹ 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑡𝑜 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

Number of +ve integers not exceeding n are divisible by d [n\d] 

Note  

Floor function ⌊𝑥⌋ approximate 

to minimum 

ceiling function ⌈𝑥⌉ approximate 

to maximum 

greatest integer function ([𝑥]) 

-3d -2d -d d 0 1 2 
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𝑥 ⌊𝑥⌋ ⌈𝑥⌉ ([𝑥]) 

2 2 2 2 

2.001 2 3 2⇒ 2 ≤ 2.001 ≤ 3 

2.4 2 3 2⇒ 2 ≤ 2.001 ≤ 3 

-2.7 -3 -2 -3⇒ −3 ≤ −3 ≤ −3 

-5 -5 -5 -5⇒ −5 ≤ −5 ≤ −5 

 

Ex 4 how many +ve integers not exceeding 80 are divisible by 3? 

0 < 𝑘𝑑 ≤ 𝑛 

0 < 3𝑘 ≤ 80                 ⇒                ⌊
80

3
⌋ = 26 

0 < 𝑘 ≤
80

3
                 ⇒                

80

3
= 26.66667 

Theorem: let a, b and c be integers where a ≠ 0, then  

(i) 𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑎\𝑐 ⇒ 𝑎\(𝑏 + 𝑐) 

(ii) 𝑖𝑓 𝑎\𝑏 ⇒ 𝑎\𝑏𝑐   , 𝑐 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

(iii)𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑏\𝑐 ⇒\𝑐 

Result  

𝑖𝑓 𝑎\𝑏 𝑎𝑛𝑑 𝑎\𝑐 ⇒ 𝑎\(𝑚𝑏 + 𝑛𝑐) , 𝑤ℎ𝑒𝑟𝑒 𝑚 𝑎𝑛𝑑 𝑛 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  

 

Ex 5 Does the following is true or not. 

•  2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4? 
4

2
= 2 𝑡𝑟𝑢𝑒 

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 8 ? 
8

2
= 4 𝑡𝑟𝑢𝑒 

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 (4 + 8)? 
(4+8)

2
= 6 𝑡𝑟𝑢𝑒 

 

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4? 
4

2
= 2 𝑡𝑟𝑢𝑒 

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4 ∗ 5? 
4∗5

2
= 10 𝑡𝑟𝑢𝑒 

 

• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 4? 
4

2
= 2 𝑡𝑟𝑢𝑒 

• 4 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 16? 
16

4
= 4 𝑡𝑟𝑢𝑒 
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• 2 𝑖𝑠 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑏𝑦 16? 
16

2
= 8 𝑡𝑟𝑢𝑒 

The division algorithm: let a be integer, d be +ve integer, then 
𝑎

𝑑
=

𝑞 a is dividend m d is divisor and q is quotient and r is reminder where 

0 ≤ 𝑟 < 𝑑  𝑟 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝑎 = 𝑑𝑞 + 𝑟 

𝑟 = 𝑎 𝑚𝑜𝑑 𝑑  

𝑟 = 𝑎 − 𝑑𝑞 

Ex 6 what are the quotient and reminder when 101 is divided by 

11. 

𝑞 = ⌊
101

11
⌋ = 9       ⟹  101 𝑑𝑖𝑣 11 = 9 

𝑟 = 101 − 11 ∗ 9 = 2   ⟹         101 𝑚𝑜𝑑 11 = 2 

Ex 6 what are the quotient and reminder when -11 is divided by 3. 

𝑞 = ⌊
−11

3
⌋ = −4       ⟹  −11 𝑑𝑖𝑣  3 = −4 

𝑟 = −11 − 3 ∗ −4 = 1   ⟹        −11 𝑚𝑜𝑑 3 = 1 

Ex 7 evaluates.  

• 11 𝑚𝑜𝑑 2 = 1 ⇒
11

2
= 5 ⟹ 𝑟 = 11 − 2 ∗ 5 = 11 − 10 =

1 

• −11 𝑚𝑜𝑑 2 = 1 ⇒
−11

2
= −5 ⟹ 𝑟 = −11 − 2 ∗ −5 =

−11 + 10 = 1 

Note  

• 𝑎\𝑏 ⟺ −𝑎\𝑏 
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Ex 8 Show that if a is an integer, then 𝟏\𝒂 

𝑞 = ⌊
𝑎

1
⌋ = 𝑎 

𝑟 = 𝑎 − 1 ∗ 𝑎 = 0 ⟹ 1\𝑎 

Ex 9 Show that if a is an integer greater then 0, then 𝒂\𝟎 

𝑞 = ⌊
0

𝑎
⌋ = 0 

𝑟 = 0 − 𝑎 ∗ 0 = 0 ⟹ 𝑎\0 

Modular arithmetic 

 Ex 10 What time does a 24-hour clock read 100 hours after it 

read 2:00 

𝑟 = 102 𝑚𝑜𝑑 24 = 6 

𝑟 = 102 − 24 ∗ 4 = 6 

Relation between two integers have the same reminder.  

Let 𝑎 𝑚𝑜𝑑 𝑚 = 𝑐 and 

𝑏 𝑚𝑜𝑑 𝑚 = 𝑐 

Found relation between a and b.  

Definition: a, b are integers and m are +ve integers ⟹ a is 

congruent to b model  

1. 𝑎 𝑚𝑜𝑑 𝑚 = 𝑏 𝑚𝑜𝑑 𝑚 ⟺ 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚 ) 

2. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚 ) ⟺ 𝑚(𝑎 − 𝑏) 

3. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚 ) ⟺ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑘 𝑎 = 𝑏 + 𝑘𝑚 
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Ex 11 Decide whether each of these integers is congruent to 5 

module 6  

1. 17 

2. 24 

17 ≡ 5 (𝑚𝑜𝑑 6) 

6\(17 − 5) =
17 − 5

6
= 2                        𝑟 = 0 

Or 

17 𝑚𝑜𝑑 6 = 5                   𝑟 = 17 − 6 ∗ 2 = 5 

6 𝑚𝑜𝑑 5 = 5                     𝑟 = 5 − 6 ∗ 0 = 5 

24 ≡ 5 (𝑚𝑜𝑑 6) 

Ex 12 list five integers that are congruent to 2 module to 4  

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) ⟺ 𝑎 = 𝑏 + 𝑚𝑘 

𝑎 − 𝑏

𝑚
=

𝑎 − 2

4
= 𝑘                            𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

𝑎 − 2 = 4𝑘 ⇒ 𝑎 = 4𝑘 + 2 

𝑘 𝑎 

0 2 

1 6 

2 10 

3 14 

4 18 

 

Ex 13 list all integers between -100 and 100 that are congruent to -

1 module 25 

𝑎 ≡ −1(𝑚𝑜𝑑 25) ⟺ 𝑎 = −1 + 25𝑘 

−100 < 𝑎 < 100 

−100 < −1 + 25𝑘 < 100 
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−99 < 25𝑘 < 101 

−3.96 < 𝑘 < 4.04 

𝑘 = −3, −2, −1, 0, 1, 2, 3, 4 

𝑎𝑡 𝑘 = −3 ⇒ 𝑎 = −1 + (25 ∗ −3) = −76 

𝑎𝑡 𝑘 = 4 ⇒ 𝑎 = −1 + (25 ∗ 4) = 99 

Ex 14 Suppose that a is integer 𝒂 ≡ 𝟒(𝒎𝒐𝒅 𝟏𝟑) 

Find the integer C with 0 ≤ 𝐶 ≤ 12 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐 ≡ 9𝑎(𝑚𝑜𝑑 13)  

Let  

𝑎 ≡ 4(𝑚𝑜𝑑 13) ⟺ 𝑎 = 4 + 13𝑘 

𝑘 = 0 ⇒ 𝑎 = 4 

𝑘 = 1 ⇒ 𝑎 = 17 

𝐶 = 9𝑎(𝑚𝑜𝑑 13) 

𝐶 = 36(𝑚𝑜𝑑 13) = 10 

𝐶 = 9 ∗ 17(𝑚𝑜𝑑 13) = 10 

And so, on  

Theorem: let m be +ve integer and let a, b, c, d are integers  

𝑖𝑓 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚),    𝑐 ≡ 𝑑(𝑚𝑜𝑑 𝑛) 

𝑎 + 𝑐 ≡ 𝑏 + 𝑑(𝑚𝑜𝑑 𝑚) 

𝑎 ∗ 𝑐 ≡ 𝑏 ∗ 𝑑(𝑚𝑜𝑑 𝑚) 

 

Ex 15                                                        𝟕 ≡  𝟐(𝒎𝒐𝒅 𝟓) 

𝟏𝟏 ≡ 𝟏(𝒎𝒐𝒅 𝟓) 

𝟕 + 𝟏𝟏 ≡ (𝟐 + 𝟏)(𝒎𝒐𝒅 𝟓) 

𝟕 ∗ 𝟏𝟏 ≡ (𝟐 ∗ 𝟏)(𝒎𝒐𝒅 𝟓) 
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Corollary (1): let m be +ve integer and let a, b are integers then.  

  

(𝑎 + 𝑏)𝑚𝑜𝑑𝑚 = ((𝑎 𝑚𝑑 𝑚) + (𝑚𝑜𝑑 𝑚)) 

Ex 16 Evaluate  

(−133 𝑚𝑜𝑑 23 + 261 𝑚𝑜𝑑 23)𝑚𝑜𝑑 23 

= (−133 + 261)𝑚𝑜𝑑 23 = 128 𝑚𝑜𝑑 23 = 13 

Corollary (2): let m be +ve integer and let a, b are integers then.  

(𝑎𝑏)𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚 )( 𝑏 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚 

𝑎2𝑚𝑜𝑑 𝑚 = ((𝑎 𝑚𝑜𝑑 𝑚 )( 𝑎 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚 

𝑎4𝑚𝑜𝑑 𝑚 = ((𝑎2 𝑚𝑜𝑑 𝑚 )( 𝑎2 𝑚𝑜𝑑 𝑚))𝑚𝑜𝑑 𝑚 

Ex 17 Evaluate  

(34𝑚𝑜𝑑17)2𝑚𝑜𝑑11 

31𝑚𝑜𝑑17 = 3 

32𝑚𝑜𝑑17 = 9 

34𝑚𝑜𝑑17 = ((32𝑚𝑜𝑑 17) ∗ (32𝑚𝑜𝑑 17))𝑚𝑜𝑑17 = 81𝑚𝑜𝑑 17

= 13 

132𝑚𝑜𝑑 11 = ((13 𝑚𝑜𝑑 11) ∗ (13 𝑚𝑜𝑑 11))𝑚𝑜𝑑 11

= 2 ∗ 2 𝑚𝑜𝑑 11 = 4 𝑚𝑜𝑑 11 = 4 

Ex 18 Evaluate  

511 𝑚𝑜𝑑12 

51 ∗ 52 ∗ 58 𝑚𝑜𝑑12 

51 𝑚𝑜𝑑12 = 5 

52 𝑚𝑜𝑑12 = 25 𝑚𝑜𝑑 12 = 1 

54 𝑚𝑜𝑑12 = 1 𝑚𝑜𝑑 12 = 1 
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58 𝑚𝑜𝑑12 = 1 𝑚𝑜𝑑 12 = 1

511 𝑚𝑜𝑑12 = 51 ∗ 52 ∗ 58 𝑚𝑜𝑑12 = 5 ∗ 1 ∗ 1 = 5

511 𝑚𝑜𝑑12 = 5

3.2 Integer representation: integer can be expressed using any integer 

greater than one as 

1. Decimal (base 10)

2. Binary (base 2)

3. Octal (base8)

4. Hexadecimal (base 16)

Theorem:  base b expression of n 

let b an integer >1 then n is a +ve integer, it can be 

expressed uniquely in the form. 

𝑛 = 𝑎𝑘𝑏𝑘 + 𝑎𝑘−1𝑏𝑘−1 + ⋯ + 𝑎1𝑏1 + 𝑎0𝑏0

( 𝑎𝑘, 𝑎𝑘−1, 𝑎𝑘−2, … . , 𝑎1,  𝑎0)𝑏

Where k is a non-negative integers 𝑎𝑘, 𝑎𝑘−1, 𝑎𝑘−2, … . . , 𝑎1, 𝑎0 less 

then b and 𝑎𝑘 ≠ 0 

Example 

(983)10 = 9 ∗ 102 + 8 ∗ 101 + 3 ∗ 103

Decimal expression: the decimal numbering system has 10 

digits (0, 1, 2, …, 9)

Example 1223410 , 110010 , 3010 

Binary expression: the binary notaton each digit is either 0 

or 1 

Example 111000101010102 

Ex 19 what is the decimal expression of the integer has (10101)2 as 

its binary expression. 
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 (10101)2= 1* 24  + 0*23 +1*22 + 0* 21 + 1*20 =21 

(10101)2= (21)10 

Octal (base 8) and Hexadecimal (base 16): expressing they 

using characters, such as letters and digits  

Octal expression base b=8 

Octal digits used (0, 1, 2, 3, 4, 5, 6, 7) example 7658 , 4278 

Ex 20 what is the decimal expression of (7016)8 as its octal 

expression  

(7016)8 = 7*83 +0*82+1*81+6*80=(3598)10 

(7016)8 =(3598)10 

hexadecimal expression base b=16 

Hexadecimal digits used (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F) 

example 7AC16 , 4FD16 

Ex 21 what is the decimal expression of (2AE0B)16 as its 

hexadecimal expression  

(2AE0B)16 = 2*164+10*163 +14*162+0*161+11*160=(175627)10 

Ex 22 Convert the following binary numbers to decimal  

1. 0110102 

 

0 1 1 0 1 0 

25 24 23 22 21 20 

 

0110102 = 1*24+1*23+1*21=(26)10 

2. 100112 

1 0 0 1 1 

24 23 22 21 20 

 

110011== 1*24+1*23+1*20=25 
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3. 10001.1012 

 

1 0 0 0 1 1 0 1 

24 23 22 21 20 2-1 2-2 2-3 

 

10001.1012 = 1*24+1*20+1*2-1+1*2-3=17.625 

Convert decimal to binary: it’s made by dividing on 2 and tack the 

reminder  

Ex Convert 7510 to binary. 

 

 

(11)10 =??2 

 

 

 

 

(11)10 =10112 

Converting decimal and binary to hexadecimal table  

Hexadecimal Decimal binary 

0 0 0000 

1 1 0001 

2 2 0010 

3 3 0011 

4 4 0100 

5 5 0101 

6 6 0110 

75 2 1 

37 2 1 

18 2 0 

9 2 1 

4 2 0 

2 2 0 

1 2 1 

0   

11 2 1 

5 2 1 

2 2 0 

1 2 1 

0   
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7 7 0111 

8 8 1000 

9 9 1001 

A 10 1010 

B 11 1011 

C 12 1100 

D 13 1101 

E 14 1110 

F 15 1111 

 

Ex 23Convert 5CA16 to binary  

5CA16 = 0101110010102 

Ex 23Convert C40E16 to binary  

C 4 0 E 

12 4 0 14 

1100 0100 0000 1110 

 C40E16 = 11000100000011102 

Convert to binary. 

• 10A716 

• D85C16 

Ex 20 Convert from binary to hexadecimal  

11011000010111002 

1. Divide each 4 digit as number  1101    1000    0101    1100 

2. Convert each number separately.  

 

 

 

11011000010111002= D85C16 

  

1101 1000 0101 1100 

13 8 5 12 

D 8 5 C 
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Addition in binary 

0+0=0 

1+0=1 

0+1=1 

1+1=0 and reminder 1 

Ex 21 Add 101100+11010. 

1 1 1 

1 0 1 1 0 0 

1 1 0 1 0 

1 0 0 0 1 1 0 

Multiplication in binary 

ab= 𝑎(𝑏020 + 𝑏121 + ⋯ + 𝑏𝑘2𝑘 = 𝑎𝑏020 + 𝑎𝑏121 + ⋯ + 𝑎𝑏𝑘2𝑘 

Ex 22 Multiply 110 and 101 

1 1 0 

1 0 1 

0 0 0 1 1 0 

0 0 0 0 

1 1 0 

0 1 1 1 1 0 

3.3 Primes: +ve integer p >1 is called prime if the only +ve 

factor of P is 1 and P “if P is not prime called 

composite” 

Example 

• 7 is prime 
7

1
,

7

7

• 9 is composite 
9

3
,

9

1
,

9

9

• 1 is not prime because it has only one +ve

factor.
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• N is composite integer ⟺ an integer a ≡ a\n 

1< a< n 

Theorem “fundamental theorem of arithmetic”:   

Every integer >1 can be written uniquely as a prime or as the 

product of two or more primes. If n is composite integer, them n 

equal to √𝑛 

Example the integer 100 is prime or not.  

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ √100 ⇒ 2, 3, 5, 7 

100

2
 𝑖𝑠 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 ⇒ 100 𝑖𝑠 𝑛𝑜𝑡 𝑝𝑟𝑖𝑚𝑒 "compsit 

Ex 23 the integer 101 is prime or not 

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ √101 ⇒ 2, 3, 5, 7 

  
101

2
 𝑖𝑠  𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 

 
101

3
 𝑖𝑠  𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟   

  
101

5
 𝑖𝑠  𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 

101

7
 𝑖𝑠  𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑔𝑎𝑟 𝑛𝑢𝑚𝑒𝑏𝑒𝑟 

 101 is a prime number.  
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Ex 24 Find the prime factorization of 100. 

2 100 

2 50 

2 25 

5 5 

5 1 

100 = 2 ∗ 2 ∗ 5 ∗ 5 

Ex 25 Find the prime factorization of 1001. 

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √1001    𝑎𝑟𝑒   2, 3, 5, 7, 11, 13, 17, …. 

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √143    𝑎𝑟𝑒   2, 3, 5, 7, 11 

𝑡ℎ𝑒 𝑝𝑟𝑖𝑚𝑒 ≤ √13    𝑎𝑟𝑒   2, 3 

1001=7*11*13 

7 1001 

11 143 

13 13 

1 

3.4 Greatest common divisor “GCD”: let a and b be integers, not 

booth zero the largest integer. 

𝑑 ∋ 𝑑\𝑎, 𝑑\𝑏 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 gcd 𝑜𝑓 𝑎 𝑎𝑛𝑑 𝑏 gcd(𝑎, 𝑏) 

𝑎 = 𝑃1
𝑎1  𝑃2

𝑎2 … . . 𝑃𝑛
𝑎𝑛

𝑏 = 𝑃1
𝑏 𝑃2

𝑏2 … . . 𝑃𝑛
𝑏𝑛

gcd(𝑎, 𝑏) = 𝑃1
min(𝑎1,𝑏1)

 , 𝑃2
𝑚𝑖𝑛(𝑎2,𝑏2)

, … … 𝑃𝑛
𝑚𝑖𝑛(𝑎𝑛,𝑏𝑛)

Ex 26 What is the greatest common divisor of 24, 36. 

2 24 2 36 

2 12 2 18 

3 6 3 9 

2 2 3 3 

1 1 
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√24  𝑎𝑟𝑒 2,3                                                                √36 𝑎𝑟𝑒 2,3 

24 = 23 ∗ 31                                                                      36 = 22 ∗ 32 

gcd(24,36) = 2min(3,2)
∗ 3min(1,2)

= 22 ∗ 31 = 4 ∗ 3 = 12 

Ex 27 What is the greatest common divisor of , 500. 

2 120    2 500    

2 60    2 250    

2 30    5 125    

5 15    5 25    

3 3    5 5    

 1     1    

 

√120  𝑎𝑟𝑒 2,3,5                                                                √500 𝑎𝑟𝑒 2,5 

120 = 23 ∗ 31  ∗ 51                                                                 500 = 22 ∗ 53 

gcd(120,500) = 2min(3,2)
∗ 5

min(1,3)
= 22 ∗ 5

1
= 4 ∗ 5 = 20 

Note: the integers a and b are relativity prime if their gcd is 1  

Example 17 and 22 are relativity prime because the gcd (17,20) =1 

The integers  a1, a2,… an-1, an one pairwise relativity prime if gcd (ai, aj)=1  

When ever 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 

Ex 28  

1. Found if the integers 10, 17, 21 pairwise relatively prime or 

not. 

2. Found if the integers 10, 19, 24 pairwise relatively prime or 

not. 

1. gcd (10, 17) =1 

gcd (10, 21) =1 

gcd (17, 21) =1 
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10, 17, 21 are pairwise relatively prime 

2. gcd (10, 24) =2 ≠1

10, 19, 24 are not pairwise relatively prime 

3.5 Least common multiple “LCM”: the least common multiple 

of +ve integers a, b is the smallest +ve integer that is divisible by 

both a and b  

gcd(𝑎, 𝑏) = 𝑃1
max(𝑎1,𝑏1)

 , 𝑃2
max(𝑎2,𝑏2)

, … … 𝑃𝑛
max(𝑎𝑛,𝑏𝑛)

Example: found lcm of 24, 36 and 120, 500 

𝑙𝑐𝑚(24,36) = 23 ∗ 32 = 8 ∗ 9 = 72

𝑙𝑐𝑚(120,500) = 23 ∗ 53 ∗ 31 = 8 ∗ 125 ∗ 3 = 3000

Theorem: let a, b +ve integers then ab=gcd (a, b) * lcm (a, b) 

Methods of finding gcd 

1. The Euclidean algorithm: let a=bq+r where a, b, q, r are integers

then

gcd (a, b) = gcd (b, r) if r=0, then gcd (a, b) = b 

 Ex 29 

Evaluate gcd (414, 662) 

Assum that 414 is a and 662 is b 

662

414
⟹ 𝑞 = 1, 𝑟 = 248 

414

248
⟹ 𝑞 = 1, 𝑟 = 166 

248

166
⟹ 𝑞 = 1, 𝑟 = 82 

166

82
⟹ 𝑞 = 2, 𝑟 = 2 

82

2
⟹ 𝑞 = 41, 𝑟 = 0 

gcd (a, b) =gcd (662, 414) = gcd (b, r) =gcd (82, 2)=2 
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j rj rj+1 qj+1 rj+2 

0 662 414 1 248 

1 414 248 1 166 

2 248 166 1 82 

3 166 82 2 2 

4 82 2 41 0 

If r=0 gcd (a, b) =b=2 

2. Bézout’s theorem: gcd (a, b) can be expressed as a linear

combination.

gcd (a, b) = Sa +tb

we set S0 =1 and S1=0 and t0 =0 and t1=1

Sj = Sj-2-qj-1 Sj-1

tj = tj-2-qj-1 tj-1

where j=2,3,….n 

Ex 30 

Evaluate gcd (252, 198) using Bézout’s theorem. 

A b 

j rj rj+1 qj+1 rj+2 Sj tj 

0 252 188 1 54 1 0 

1 198 54 3 36 0 1 

2 54 36 1 18 1 -1

3 36 18 2 0 -3 4 

4 4 -5

4a-5b=18 

gcd (252, 198) = 18 

3.6 Applications  

1. Hashing function “Find the memory location “: h(k) = k mod m

Example: Find the memory location by the hashing fun h(k) = k mod 

111 to the records of customer with social security number 064212848 

and 037149212  

h (064212848) = 064212848 mod 11= 14 



93 
 

h (037149212) = 037149212 mod 11= 65 

2. Pseudorandom number its use in simulation and cryptography  

Linear congruential method 

𝑥𝑛+1 = (𝑎𝑥𝑛 + 𝑐)𝑚𝑜𝑑 𝑚 

𝑥0 ⇒ 𝑠𝑒𝑒𝑑,    𝑎 ⇒ 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟   𝑐 ⇒ 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡   𝑚 ⇒ 𝑚𝑜𝑑𝑢𝑙𝑠  

 Example m=9, a=7, c=4, x0=3  

𝑥1 = (7𝑥0 + 4)𝑚𝑜𝑑 9 = 25 𝑚𝑜𝑑 9 = 7 

𝑥2 = (7𝑥1 + 4)𝑚𝑜𝑑 9 = 53 𝑚𝑜𝑑 9 = 8 

𝑥3 = (7𝑥2 + 4)𝑚𝑜𝑑 9 = 60 𝑚𝑜𝑑 9 = 6 

𝑥9 = (7𝑥8 + 4)𝑚𝑜𝑑 9 = 39 𝑚𝑜𝑑 9 = 3 

Then the numbers will repeat again so m must be great number to 

prevent any when tp knew how large the cycle is  

3. Cryptography  

𝑓(𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 𝑚                                       𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 

𝑓(𝑝) = (𝑝 − 𝑘)𝑚𝑜𝑑 𝑚                                       𝑑𝑦𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 

Where m: number of elements in the language used  

Example To encrypt the message “stop global warming”.  

m= 26 the number of English alphabet 

use k =11  

S T O P G L O B A L W A R M I N G 

18 19 14 15 6 11 14 1 0 11 22 0 17 12 8 13 6 

 

𝑓(𝑝) = (𝑝 + 𝑘)𝑚𝑜𝑑 𝑚 

𝑓(18) = (18 + 11)𝑚𝑜𝑑 26 

Repeat the iteration for every character the final is  

3 4 25 0 17 22 25 12 11 22 7 11 2 23 19 24 17 

D E Z A R W Z M L W H L C X T Y R 
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Chapter 4  

Graph theory. 

Introduction 

Graphs are discrete structures consisting of vertices and 

edges that connect these vertices. There are different kinds 

of graphs, depending on whether edges have directions, 

whether. multiple edges can connect the same pair of 

vertices, and whether loops are allowed. Problems in 

almost every conceivable discipline can be solved using 

graph models. We will give examples to illustrate how 

graphs are used as models in a variety of areas. For 

instance, we will show how graphs are used to represent 

the competition of different species in an ecological niche, 

how graphs are used to represent who influences whom in 

an organization, and how graphs are used to represent the 

outcomes of round-robin tournaments. We will describe 

how graphs can be used to model acquaintanceships 

between people, collaboration between researchers, 

telephone calls between telephone numbers, and links 

between websites. We will show how graphs can be used 

to model roadmaps and the assignment of jobs to 

employees of an organization. 

Using graph models, we can determine whether it is 

possible to walk down all the streets in a city without 

going down a street twice, and we can find the number of 

colors needed to color the regions of a map. Graphs can 

be used to determine whether a circuit can be implemented 

on a planar circuit board. We can distinguish between two 

chemical compounds with the same molecular formula but 
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different structures using graphs. We can determine 

whether two computers are connected by a 

communications link using graph models of computer 

networks. Graphs with weights assigned to their edges can 

be used to solve problems such as finding the shortest path 

between two cities in a transportation network. We can 

also use graphs to schedule exams and assign channels to 

television stations. This chapter will introduce the basic 

concepts of graph theory and present many different graph 

models. To solve the wide variety of problems that can be 

studied using graphs, we will introduce many different 

graph algorithms. We will also study the complexity of 

these algorithms. 

 4.1Graphs 

Definition:  a graph G = (V, E) consists of V (a non-empty set of 

vertices) or nodes and E (a set of edges). Each edge has either 

one or two vertices associated with it, called its endpoint an edge 

is said to connect it’s endpoints. 

Computer network 



96 
 

 

Remark 

 

 

Finite graph  

• Finite vertex set. 

• Finite edge set 

Infinite graph  

• Infinite vertex set. 

• Infinite edge set 

  

Graph

Finite graph Infinet graph
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Types of undirected graph  

Simple graph: “each edge of the graph connects two different 

vertices and where no two edge connect the same pair of 

vertices.” 

 

Multigraph: graphs that may multiple edges connecting the 

same vertices” 

 

Loop: “edge that connect a vertex to itself” self-edge. 
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Pseudo graph: graph that may include loop, and possibly 

multiple edges connecting the same pair of vertices or a 

vertex to itself. 

 

Undirected graph  

 

Directed graph: “digraph” (V, E) Consists of a nonempty set 

of vertices V and a set of directed edges (arcs) E. Each edge 

is associated with an ordered Pairs of vertices. 

 

Simple directed graph: "when a directed graph has no loops 

and has no multiple directed edges." 
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Directed multigraphs: have multiple directed edges from 

vertex to a second Vertex (Possibly the same vertex) 

 

Mixed graph: "For some models may need a graph where 

some edges one undirected, while other one directed 

Comparison between different type of graph  

Type Edges Multi edges allow Loops allow 

Simple graph Undirect X X 

Multi graph Undirect √ X 

Pseudo graph Undirect √ √ 

Simple direct Direct X X 

Multi direct Direct √ √ 

Mixed graph Direct √ √ 
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4.2 Graph models: graphs one used in a wide variety of 

models. 

❖ Social Networks.

❖ Communication

❖ Information

❖ Transportation

❖ Biological

❖ Software design Applications

❖ Tournaments.

❖ Other.

Social Networks 

Social structures based on different kinds of relationships 

between People or groups of People. acquaintanceship 

and friendship Graphs (Simple graph) as Facebook 

“virtual word” 

Undirect simple graph 
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Inference graphs: In studies of group behavior, it is observed 

that Certain People Con influence the thinking of others. 

 

Simple direct graph  

Collaboration Graphs: (Hollywood links graph) 

 

 
Multiple graph with more than 2.9 million vertex till 2018 

 

Communication Networks: “Call graphs” graphs can be used to 

model telephone Calls made in a network. 

 
Multi graphs 
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Transportation Networks: we can use graphs to model many 

different types of transportation networks (road, air, shipping, _) 

like underground metro network in Egypt.  

Biological Networks: Many aspects of the biological sciences Can 

be modeled using graphs. (Protein interaction graphic): A Protein 

interaction in a living Cell occurs when two or more proteins in that 

Cell bind to perform a biological function. 

Semantic Networks: graphs models one used extensively in 

natural language understanding (NLU). the subject of enabling 

machine, to is assemble and Parse human speech Its, goal is to 

allow machines to understand and communicate as human do.) 

 

 

Software design Applications: graphs models one useful 

tools in the design of software 

(Modelle dependency graphs): 

• how to structure a program into different Parts 

• Understanding how the different modules of a program 

interact 
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Web browser graph  

Tournaments:  

1. Round-robin tournament: each team plays every 

other team exactly once and no draws one allowed. 
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Single-elimination tournament: each contestant is 

eliminated after one lose. 

 
 

Example (1): determine the type of the graphs. 
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Example (2): construct the intersection graph of these 

collection of sets. 

A1= {0, 2, 4, 6, 8} 

A2= {0, 1, 2, 3, 4} 

A3= {1, 3, 5, 7, 9} 

A4= {5, 6, 7, 8, 9} 

A1= {0, 1, 8, 9} 

4.3 Basic graph terminology: two vertices U and V in an 

undirected graph G are called adjacent (neighbors) in G if U 

and V are endpoints of an edge e of G. 

edge(e) is called incident with the vertices U and V 



106 
 

Neighborhood of Vertex (V) N(V): Set of all neighbors of 

a vertex. V of G= (V, E) 

 

❖ N(a)= {b, f) 

❖ N (b)= {a, c, f, e) 

❖ N(e)= {b, f, c} 

❖ N(c)= {b, f, e, d} 

❖ N(d)= {c} 

❖ N(g)=ɸ 

Remek: If A is subset of V, then the set of all Vertices in G 

that are adjacent to at least one. 

Vertex in A N(A)=U N(V)      V€A 

The degree of a vertex (undirected graph): it's the number of 

edges incident with it, except that a loop at a vertex 

contributes twice to the degree of that vertex. 

❖ deg (a)=2 

❖ deg (b)=4 

❖ deg (e)=3 

❖ deg (c)=4 

❖ deg (d)=1 

❖ deg (g)=0 
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Isolated: is a vertex of degree zero (is not adjacent to any 

vertex) vertex g is isolated. 

Pendant: A vertex is Pendant it and only if it has degree one. 

Vertex d is Pendant. 

Example what are the degrees and what are the neighborhoods 

of the vertices in the following graph? 

 

deg (a)= 4 deg (b)= 6 deg (c)= 1 Pendant deg(e)= 6 

deg (g)= 0 Isolated   deg (d)= 5 

 

deg (a)= 6 deg (b)= 6 deg (c)= 6 deg(e)= 3 deg (d)= 5 

The handshaking Theorem: Let G= (V, E) be undirected graph 

with m edges. Then 2𝑚 = ∑ deg (𝑣)𝑣∈𝑉  
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Edge having two end Points and a handshake involving two 

hands. 

In exercise 1 ∑ deg(𝑣)𝑣∈𝑉 = 4 + 6 + 1 + 6 + 5 + 0 = 22 

m=22/2 =11 

Exercise How many edges one there in an undirected graph with 

lo vertices Cach of degree six. 

∑ deg(𝑣) = 10 ∗ 6 = 60

𝑣∈𝑉

 

𝑚(𝑒𝑑𝑔𝑒𝑠) =
60

2
= 30 

 

Theorem An undirected graph has an even number of vertices 

of odd degree. 

 

Let V1 set of vertices of even degree = {b, c, d} 

Let V2 set of vertices of odd degree = {a, e} 2𝑚 =

∑ deg (𝑣)𝑣∈𝑉  

2𝑚 = ∑ deg(𝑣)

𝑣∈𝑉1

+ ∑ deg(𝑣)

𝑣∈𝑉2
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Directed graphs:  when (u, v) is an edge of the graph G with 

directed edges. 

 U adjacent to v 

 V adjacent from u 

 

Note initial and end of a loop are the same.  

In-degree of a vertex deg-(v): is the number of edges with V as 

their terminal vertex. 

In-degree of a vertex deg+(v): is the number of edges with V as 

their initial vertex. 

Note loop at a vertex contributes 1 to both deg-(v) and deg+(v) 

Exercise Calculate the number of vertices, number of edges, In-

degree of every vertex, and out-degree of every vertex. 
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Example  

 

Number of vertex =6   number of edges =12 

deg-(a) = 2        deg+(a) = 4 

deg-(b) = 2        deg+(b) = 1 

deg-(c) = 3        deg+(c) = 2 

deg-(d) = 2        deg+(d) = 2 

deg-(0) = 3        deg+(e) = 3 

deg-(f) = 0        deg+(f) = 0 

∑ 𝑑𝑒𝑔−(𝑣)

𝑣∈𝑉

= 12                                             ∑ 𝑑𝑒𝑔+(𝑣) = 12

𝑣∈𝑉

 

Theorem Let G= (V, E) be graph with directed edges. Then, 

∑ 𝑑𝑒𝑔−(𝑣)

𝑣∈𝑉

= ∑ 𝑑𝑒𝑔+(𝑣) = |𝐸|

𝑣∈𝑉
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Note  

❖ null graph: a graph without any edge 

❖ regular graph: a graph in which all vertices are of equal 

degree. 

 

Exercise Can a simple graph exist with 15 vertices each of degree 

five? 

 

2𝑚 = ∑ 𝑑𝑒𝑔(𝑣)

𝑣∈𝑉

= 15 ∗ 5 = 75 

𝑚 = |𝐸| = 37.5                                𝑛𝑜𝑡 𝑠𝑖𝑚𝑝𝑙𝑒 𝑔𝑟𝑎𝑝ℎ  

Simple graph m must be integer 0.5 means that there is loop 

in the graph. 

 

Exercise Find the number of vertices, edges, degree of each vertex 

in the fllowing graphs: 
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4.4 Some special simple graphs: 

1. Complete graph (Kn) n ≥ 1

Is the simple graph that contains one edge between each Pair of 

distinct vertices. 

2. Cycles: (Cn), n ≥ 3: The cycle Cn; n ≥ 3 Consists of n Vertices v1,

v2, …,vn and edges

{v1, v2}, {v2, v3}, ……. {vn-2, vn-1}, {vn-1, vn} 
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3. wheels: (Wn), n≥3: We obtain the wheel Wn when we add an 

additional Vertex to the cycle Cn and connect this new vertex 

to each of the n vertices in Cn by new edge. 

 
4. n-Cubes (Qn): The n-dimensional hypercube (n-cube) Qn is the 

graph that has vertices representing the 2n bit strings of length n. 

Two vortices are adjacent if and only if the bit strings that they 

represent differ in one exactly one-bit Position. 
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Bipartite graphs: if vertex ser V Can be Partitioned into two 

disjoint sets V, and V₂ such that every edge in the graph Connects a 

vertex in V1 and a Vertex in V2 (so that no edge in G connects two 

vertices in V1, or two vertices in V₂)⇒ (V1,V2) a bipartition of the 

vertex set V of G  

 

Subgraph induced: Let G = (V, E) be a simple graph. The 

subgraph induced by a Subset W of the vertex set V is the graph 

(W, F), where edge Set F Contains an edge in E if and only if both 

endpoints of this edge one in W. 

 

H subgraph induced by W= {a, b, c, d} 
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Removing or adding edge of a graph  

 

Removing G - {b, c} 

 

Adding G + {e, d} 

 

Removing vertices from graph  

 

Removing vertex C 
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Edge contraction: 

 

G contract by replacing {b, c} by F 

 

Graph union.  

 

V=V1 U V2 

E= E1 U E2 
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Example: Determine whether the following graphs is bipartite 

or not  

 

C1 is not bipartite.  C2 is bipartite. C3 is not bipartite. 

Determining whether it is possible to assign either red or blue 

to each Vertex So that no two adjacent Vertices are assigned 

the same color. 

In C3: V1 = {a, b, d}     red color  

  V2 = {c, e}    blue color  

 

So C3 is not bipartite. 
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Example: Determine whether the following graph is bipartite 

or not  

 

V1 = {a, c, e} 

V2 = {b, d, f} 

 

So, the graph is bipartite. 

Example: Determine whether the following graph is bipartite 

or not  

 

The graph is not bipartite. 
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Complete bipartite graphs (Km,n): Is a graph that has it Vertex 

Set Partitioned into two subsets of m and n vertices, respectively 

with an edge between two vertices it and only if one vertex, is 

in the first subset and the other is in the second subset. 

 

K3,5 complete bipartite 

 

K2,6 complete bipartite 

  



120 

A subgraph of graph G= (V, E): is a graph H= (W, F) 

where𝑤 ≤ 𝑉  

𝑎𝑛𝑑 𝐹 ≤ 𝐸. 

A subgraph H of G is a proper subgraph of G if H # G 

Original graph 

Proper subgraph of K5

4.5 Representing graphs: There are many useful ways to 

represent graphs. In working with a graph, it is helpful to be able 

to choose its most appropriate representation. In this section, we 

will show how to represent graphs in several different ways. 

❖ using Representing graphs adjacency list.

❖ using Representing graphs adjacency matrix

❖ using Representing graphs incidence matrix
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Adjacency list: Is a way to represent a graph with no multiple 

edges, which specify the Vertices that are adjacent to each Vertex 

of the graph. 

Example Use adjacency list to describe the following simple 

graph. 

Adjacency matrix: let G= (V, E) is a simple graph, where |𝑣| =

𝑛. suppose that the Vertices of G ane listed arbitrarily as V1, V2, 

….., Vn . 

The adjacency matrix A (AG) of G with respect to this listing of 

vertices is nxn zers-ore matrix with 1 as its (i, j) entry when Vi. 

and VJ one adjacent, and o as its (i, j) entry when they are not 

adjacent  

A [aij] , where  

𝑎𝑖𝑗 = {
1  𝑖𝑓 {𝑉𝑖 , 𝑉𝑗}𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑜𝑓 𝐺

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Vertex Adjacent vertices  

A b, c, e 

B A 

C a, e, d 

D c, e 

E a, c, d 



122 
 

Example use an adjacency matrix to represent the following 

graph. 

 

 a b c d 

a 

[

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

] 
b 

c 

d 

All undirected greatly have symmetric adjacency matrices. 

Note Adjacency matrix of a graph is based on the ordering 

chosen for the Vertices. Hence, there may be as many as n! 

different adjacency matrices for a graph with Vertices. 

Example adjacency matrices 
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Incidence Matrix:  Let G = (V, E) be undirected graph. 

Suppose that V1,V2,…,Vn  are the vertices and e1,e2,…,en  are the 

edges of Go Then the incidence matrix w, r, t. this ordering of V 

and E is the (n x m) matrix 

M=[aij], where 

𝑎𝑖𝑗 = {
1  𝑤ℎ𝑒𝑛 𝑒𝑑𝑔𝑒 𝑒𝑗𝑖𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑤𝑖𝑡ℎ 𝑠𝑖  

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

Example of incidence matrix of graph 

Example (1) 
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Example (2) 



125 

References 

1- Rowan Garnier and John Taylor, Discrete

Mathematics for New Technology, 2nd

Edition, Institute of Physics Publishing,

2001.

2- S. Lipschutz−M. L. Lipson, Schaum’s

Outline of Theory and Problems of Discrete 

Math, 2004.

3-Kenneth H. Rosen, Discrete Mathematics

and Its Applications, 7th Edition, 2007. 




